

Instrucciones de Operación Photometer *4040* _{V5+}

ROBERT RIELE GmbH & Co KG

Versión de Software 6.8 Versión del Documento 11.2016

SIMBOLOS

En el material de embalaje, en la placa del equipo y en las instrucciones de operación pueden encontrarse los siguientes símbolos y abreviaciones:

Fabricante:

Este producto cumple con los requisitos de la norma 98/79/EC sobre instrumental médico para diagnóstico in vitro (IVD).

Instrumental médico para diagnóstico in vitro (IVD).

Atención (consulte la documentación adjunta)!

Consulte las indicaciones de seguridad contenidas en las instrucciones de operación adjuntas al dispositivo.

Consulte las instrucciones de operación.

Símbolo para la identificación de información importante para el uso correcto del dispositivo.

Descripción de las especificaciones técnicas según DIN 58 960 Teil 4

Peligro biológico

Pruebas biológicas, que contengan material de origen humano, deben ser tratadas como potenciales fuentes de infección. Consulte las normas de laboratorio para un manejo seguro.

Símbolo para la identificación de dispositivos eléctricos y electrónicos, según § 7 ElektroG

IP XO

El dispositivo no cuenta con una protección especial contra humedad penetrante (IP = International Protection)

RFF

Número de pedido.

SN

Número de serie.

NORMAS Y DIRECTIVAS

El Fotómetro 4040 cumple con los requisitos de la norma 98/79/EC sobre instrumental médico para diagnóstico in vitro (IVD). Además, el Fotómetro 4040 ha sido manufacturado de acuerdo a los requisitos especiales de seguridad para instrumental médico IVD de la norma EN 61010.

INSTRUCCIONES DE SEGURIDAD

Cualificación del usuario

El dispositivo debe ser operado sólo por personal entrenado adecuadamente y cualificado.

Condiciones ambientales

El Fotómetro 4040 debe ser operado sólo en lugares cerrados.

Consulte el capítulo 10.1 del presente manual para informacion más detallada.

Ambientes con pacientes

El Fotómetro 4040 no debe ser operado en ambientes con pacientes.

Seguridad eléctrica

Este equipo fue inspeccionado en fabrica, y salió en perfectas condiciones técnicas. Para mantener tal condición y conservar la operación sin fallas y con absoluta seguridad, el usuario deberá seguir las guías y observaciones contenidas en este manual.

Asegúrese que el equipo cuente con conexión a tierra efectiva. Todos los dispositivos periféricos que sean conectados con el Fotómetro 4040, deben cumplir con el estándar EN 60950. Consulte la documentación de los dispositivos periféricos antes de conectarlos.

Al abrir cubiertas o al retirar partes del equipo, excepto donde para ello no es necesario el uso de herramientas, pueden quedar al descubierto componentes bajo tensión. Los conectores pueden encontrarse también bajo tensión. No intente realizar ningún trabajo de mantención o reparación en un equipo abierto que se encuentre bajo tensión!

Reparaciones en el equipo inclusive el cambio de la batería de litio, deben ser realizadas solamente por personal especializado y autorizado. Reparaciones inadecuadas ponen en peligro al usuario y conducen además a la pérdida de la garantía.

En caso de cualquier duda con respecto a la seguridad del equipo, desconéctelo y evite continuar su uso.

Ondas electromagnéticas

Artefactos que emitan ondas electromagnéticas pueden influir en los resultados de la medición o causar fallas en la función del Fotómetro 4040. Los siguientes aparatos no deben ser usados junto con el Fotómetro 4040 dentro del mismo lugar: teléfonos celulares, teléfonos inalámbricos, radioemisores o radioreceptores o cualquier otro tipo de aparato eléctrico que genere radiación electromagnética.

Reactivos

Siga las instrucciones de seguridad y uso del fabricante de los reactivos.

Consulte la legislación actual válida alemana de substancias peligrosas "Gefahrstoffverordnung" (GefStoffV)!

Seguridad biológica

Materiales de desecho líquidos pueden representar un peligro biológico. Use siempre guantes apropiados al trabajar con estos materiales. No toque ninguna parte del equipo que no sea determinada para el uso de éste. Consulte el protocolo de laboratorio con respecto al manejo de substancias de riesgo biológico. Consulte la legislación actual válida alemana de substancias biológicas "Biostoffverordnung" (BioStoffV)!

Derrames y limpieza

Si se derrama una muestra sobre el equipo, limpiela inmediatamente y aplique un desinfectante!

Residuos

Maneje los residuos líquidos apropiadamente, de acuerdo a la legislación vigente sobre contaminación acuática y para el tratamiento de residuos y materias de desecho.

GARANTIA DEL FABRICANTE

ROBERT RIELE GmbH & Co KG garantiza que el Fotómetro 4040 está libre de fallas de material y manufactura. Contáctese con su distribuidor local para obtener mayor información al respecto.

NOTA DE MANEJO DE DESECHOS

Al final de la vida útil de este equipo, el equipo y sus accesorios pueden ser devueltos al fabricante, con costo al propietario, para su debido tratamiento de desecho sin daño al medio ambiente. Debe de probarse mediante un certificado su previa descontaminación.

Dirección del fabricante:

ROBERT RIELE GmbH & Co KG Kurfürstenstr. 75-79 13467 BERLIN GERMANY

Teléfono: +49 (0)30 404 40 87 Fax: +49 (0)30 404 05 29 E-Mail: info@riele.de www.riele.de

SISTEMA DE GESTION DE CALIDAD

ROBERT RIELE GmbH & Co KG mantiene un sistema de gestión de calidad de acuerdo con EN ISO 13485 certificado por mdc medical device certification GmbH.

CONTENIDO

1	INTRO	ODUCCION AL FOTOMETRO 4040	7
2	INST	ALACION	8
_		TREGA	
		EPARACION PARA INSTALACION	
	2.3 INS	TALACION	8
	2.4 COL	LOCACION DE PAPEL DE IMPRESION	9
3	FLEM	IENTOS DE OPERACION	10
J		NTE	
		NEL POSTERIOR	
	3.3 PAN	VTALLA SENSIBLE AL TACTO	11
	3.4 ARE	EA DE TRABAJO	11
	3.5 CUE	BETAS Y ADAPTADORES	
	3.5.1	Trabajo con cubeta estándar	11
	3.5.2	Reducción del volumen mínimo de medición	11
4	SELE	CCION DE PROGRAMAS DE MEDICION	12
		dición con métodos programados	
	4.2 Med	dición con métodos básicos	13
		or de métodos	
		dades	
		tección de lámpara [LAMP.]	
	4.6 Can	nbio de renglón [LF]	14
5	PROC	CEDIMIENTOS DE CÁLCULO	15
		TAS GENERALES	
	5.1.1	Manipulación del equipo	
	5.1.2	Temperamiento del equipo	
	5.1.3	Ingreso de datos	
	5.1.4	Métodos con estándar	
	5.1.5 5.1.6	Métodos con estándar múltiple	
	5.1.6 5.1.7	Métodos de cinética	
	5.1.8	Métodos con blanco de reactivo.	
	5.1.9	NO. ID. y numerador	
	5.1.10	Almacenamiento de resultados de muestras	
		REVIACIONES	
	5.3 SUN	MARIO DE LOS PROCEDIMIENTOS DE CÁLCULO	22
		SCRIPCION DE LA EJECUCION DE LOS METODOS	
	5.4.1 5.4.2	Procedimiento de cálculo 1 (C/F)	
	5.4.2 5.4.3	Procedimiento de cálculo 2 (C/F/B _R) Procedimiento de cálculo 3 (C/F/B _M)	
	5.4.3 5.4.4	Procedimiento de calculo 3 (C/F/B _M)	
	5.4.5	Procedimiento de cálculo 5 (C/S)	
	5.4.6	Procedimiento de cálculo 6 (C/S/B _R)	
	5.4.7	Procedimiento de cálculo 7 (C/S/B _M)	
	5.4.8	Procedimiento de cálculo 8 (C/S/B _M B _R)	31
	5.4.9	Procedimiento de cálculo 9 (CTF/F/B _R)	
	5.4.10	Procedimiento de cálculo 10 (CTF/S/B _R)	
	5.4.11	Procedimiento de cálculo 11 (CIN/F/B _R)	
	5.4.12	Procedimiento de cálculo 12 (CIN/S/B _R)	
	5.4.13 5.4.14	Procedimiento de cálculo 13 (TRANSMITANCIA)	
	5.4.14 5.4.15	Procedimiento de cálculo 14 (C/F Delta)	
	5.4.16	Procedimiento de calculo 13 (C/F 3 LO)	
_		,	
6	EDIT	OR DE METODOS	42

7	UTIL	IDADES	45
	7.1 SE	LECCION DE LAS UTILIDADES	45
	7.2 DE	SCRIPCION DE LAS UTILIDADES	46
	7.2.1	Ajuste óptico	
	7.2.2	Funciones de estándar múltiple	
	7.2.3	Impresor ON / OFF	
	7.2.4	Menu serial com	49
	7.2.5	Control de calidad	
	7.2.6	Imprimir configuración	
	7.2.7	Archivo Resultados	55
	7.2.8	Control de temperatura ON / OFF	
	7.2.9	Ajuste temperatura	55
	7.2.10		
	7.2.11	Nombre de operador	
	7.2.12		
	7.2.13 7.2.14		
	7.2.14	·	
	7.2.16		
	7.2.10		59
	7.2.18	· · · ·	
8	MAN	ITENIMIENTO	60
	8.1 INS	STRUCCIONES DE LIMPIEZA	60
	8.2 CA	LIBRACION DEL SISTEMA DE MEDICION	60
	8.3 CA	MBIO DE PAPEL DE IMPRESION	60
	8.4 RE	MPLAZO DE FUSIBLES DE LINEA	61
9	MEN	SAJES DE ERROR Y CORRECCION	62
		DTA GENERAL	
	9.2 ME	NSAJE ACUSTICO DE ERROR	62
		NSAJES DE ERROR EN TEXTO	
	9.4 ME	NSAJES DE ERROR CODIFICADOS	62
10) DAT	OS TECNICOS	65
1		ONDICIONES AMBIENTALES	
	10.1 CC	LIDAD MINIMA DE OPERACION	65 65
		ACA DEL EQUIPO	
		EVIARIO DE ESPECIFICACIONES	
		PECIFICACIONES TECNICAS	
11		ESSORIOS Y REPUESTOS	
12	2 LIST	ADO DE METODOS	70
		TODOS BASICOS	
		STA DE METODOS DEL USUARIO	

1 INTRODUCCION AL FOTOMETRO 4040

El Fotómetro 4040 es un Espectrofotómetro programable para aplicaciones manuales. El equipo está diseñado para diagnóstico in vitro. Se asume que será operado por personal entrenado adecuadamente y cualificado.

El equipo es utilizable para: ej. Análisis de química clínica húmeda. Las soluciones pueden ser medidas en cubetas desechables o de vidrio levendo secuencialmente las muestras.

La solución es rápidamente y con exactitud calentada a 37° C tanto en la cubeta de medición como también en el bloque incubador con ocho posiciones.

Si se requiere es posible reducir el volumen mínimo de medición de 500 µl a 250 µl (capítulo 3.5.2 Reducción del volumen mínimo de medición).

El equipo es operado por medio de la pantalla sensible al tacto. Externamente es posible operarlo por medio de la interfaz serial de datos (capítulo 7.2.4 - Menu serial com – CONTROL REMOTO).

Para diferentes métodos de medición, el sistema cuenta con varios métodos programados con parámetros abiertos (capítulo 5 - PROCEDIMIENTOS DE CÁLCULO y capítulo 12 - LISTADO DE METODOS).

Además el sistema cuenta con hasta **231 métodos libres** – estructurados en los métodos básicos – para ser creados y almacenados con el editor de métodos por el usuario.. La lista de métodos puede imprimirse (capítulo 6 - EDITOR DE METODOS).

Capacidad de hasta **50 curvas de calibración no lineales**, cada una con un máximo de 20 de puntos de referencia que pueden ser almacenados (capítulo 7.2.2 - Funciones de estándar múltiple).

Normalmente el Fotómetro 4040 viene con seis filtros ópticos de 340, 405, 492, 546, 578 y 623 nm de longitud de onda. Si es necesario, éstos pueden ser reemplazados por cualquier longitud de onda dentro del rango entre 340-800 nm. Además el equipo cuenta con tres lugares adicionales para filtros adicionales tal como 670 nm para ser incorporados opcionalmente.

El equipo cuenta con un impresor térmico.

Los resultados de las mediciones pueden ser almacenados y administrados en la memoria del Fotómetro 4040 (capítulo 7.2.7 - Archivo Resultados).

De acuerdo con buenas practicas documentales de laboratorio, (GLP) el equipo puede imprimir el nombre del laboratorio y del usuario o transferir la información al EDP (capítulo 7.2.4 - Menu serial com – EDP ON/OFF).

Hasta 50 métodos pueden ser supervisados mediante control de calidad en el Fotómetro 4040 (capítulo 7.2.5 - Control de calidad).

Gracias a un gran número de utilidades es posible configurar individualmente el equipo. Las utilidades de pruebas funcionales permiten el análisis de fuentes de errores.

El Fotómetro 4040 permite cargar el sistema operativo del equipo desde una PC usando la tecnología de Memoria Instantánea. De este modo los nuevos desarrollos y avances en el software pueden ser actualizados sin manipulaciones de los circuitos del equipo. (capítulo 7.2.4 - Menu serial com – DESCARGA DE DATOS).

2 INSTALACION

2.1 ENTREGA

Verifique que la unidad y el contenido del embalaje estén libres de daños visibles de transporte. Verifique que los siguientes componentes se encuentren en el envío:

- 1 Instrucciones de operación
- 1 Funda de protección
- 2 Fusibles de línea
- 1 Cable de alimentación
- 2 Papel de impresión
- 1 Tapa de impresor
- Separador para volumen de medición 250 μl

Almacene el material de empaque por una posibilidad de tener que devolver el equipo por alguna razón, en caso de encontrar cualquier anomalía, envío incompleto o falla del equipo, avise inmediatamente a su distribuidor autorizado.

2.2 PREPARACION PARA INSTALACION

El equipo deberá colocarse en una base rígida y estable. La entrada de aire en la base y la salida del drenaje de líquidos analizados, deberán estar libres de obstrucción para garantizar la libre ventilación del equipo.

En caso que el equipo haya estado expuesto a fuertes cambios de temperatura y/o humedad ambiental, éste deberá aclimatarse suficientemente antes de su puesta en operación.

2.3 INSTALACION

El Espectrofotómetro 4040 opera automáticamente en cualquier voltaje en el rango de $100 \, V_{AC}$ - $240 \, V_{AC}$ en $50/60 \, Hz$ sin ningún ajuste o cambio de conexiones. El conector del cable de alimentación del equipo, deberá enchufarse en el panel posterior en el sitio previsto para alimentación, el otro extremo del cable de alimentación, deberá enchufarse al conector de pared apropiado, que cuente con conexión a tierra efectiva.

Al conectar y desconectar dispositivos periféricos (PC, impresora), el Fotómetro 4040 y los periféricos deberán encontrarse apagados.

Encienda el Fotómetro oprimiendo el interruptor principal en el panel posterior.

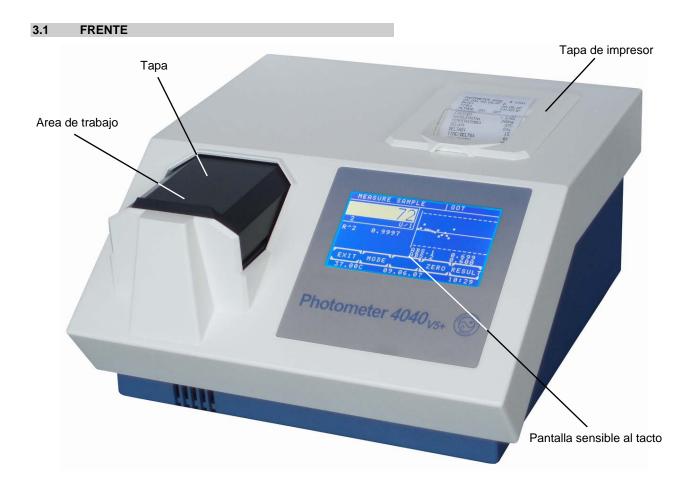
Pantalla inicial:

Después de encender el equipo serán mostrados en pantalla: derechos de autor, portal de internet, tipo del equipo y número de versión. Paralelamente, los mismos datos se imprimen en el impresor, si éste se encuentra habilitado.

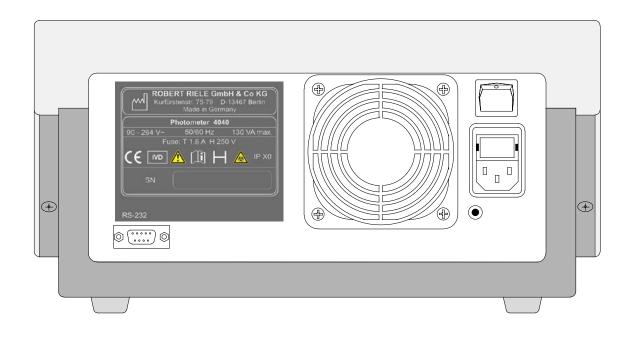
					M	ΙE	N	U		P	R	Ι	N	C	Ι	P	Α	L								
ME	D	Ι	R		С	•		M	E	T	0	D	0	S		P	R	0	G	R	A	M	A	D	0	5
M E	D	Ι	R		C		-	M	E	T	0	D	0	S		В	A	S	I	С	0	S				
M E	T	0	D	0		N	U	E	V	0	/	E	D	I	T	A	R	/	С	0	P	Ι	A	R		
UT	I	L	I	D	A	D	E	S					D		L	A	M	P	•		ľ		L	F		
3 7		0	•	С					0	1	/	1	7	/	1	4						1	1	:	3	ę

El equipo esta térmicamente estable y listo para medir después de 15 minutos. Al principio, el módulo térmico se encuentra apagado. Este deberá encenderse en este momento si se requiere medir soluciones con control térmico, para lograr paralelamente la estabilización del equipo.

Encienda la unidad de control de temperatura directamente en las utilidades (capítulo 7.2.8 - Control de temperatura ON / OFF) o indirectamente seleccionando un método que contenga un precalentamiento programado (capítulo 5.1 - NOTAS GENERALES).


Cuando aparecen mensajes de ERROR durante la operación, primeramente deberán ser confirmados con [E] antes de corregir (capítulo 9- MENSAJES DE ERROR Y CORRECCION).

2.4 COLOCACION DE PAPEL DE IMPRESION


Cuando el equipo es puesto en operación por primera vez, o cuando un rollo en uso llega a la parte final colorida, un nuevo rollo deberá ser colocado siguiendo el procedimiento a continuación:

- Abra la cubierta del impresor.
- Levante la palanca verde.
- Retire el residuo de papel.
- Vuelva a bajar la palanca verde.
- Coloque el eje en el nuevo rollo de papel.
- Inserte el papel en el impresor. El papel será alimentado automáticamente en el impresor aprox. 4 cm.
- Presione [LF] varias veces para cambiar renglón y que el papel avance en su trayectoria hasta asomarse unos 5 cm. Si el impresor no reacciona es posible que esté desactivado.
- Coloque el eje del rollo de papel dentro de la guía.
- Pase el papel por la ranura de la cubierta del impresor y cierre la cubierta.

3 ELEMENTOS DE OPERACION

3.2 PANEL POSTERIOR

3.3 PANTALLA SENSIBLE AL TACTO

Las aplicaciones e informaciones son mostradas en la pantalla sensible al tacto, que reacciona a la presión ejercida sobre ella. Para realizar una función, simplemente presione en la pantalla sobre el área deseada.

Nunca toque la superficie de la pantalla sensible al tacto con un bolígrafo, lápiz de grafito o cualquier otro objeto con punta.

3.4 AREA DE TRABAJO

3.5 CUBETAS Y ADAPTADORES

3.5.1 Trabajo con cubeta estándar

El haz de rayos va desde la parte posterior del equipo hacia la parte anterior. La cubeta es colocada según la ilustración **CONSTRUCCION OPTICA** en DATOS TECNICOS.

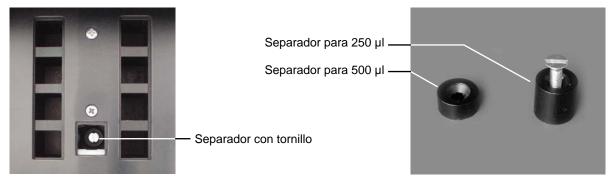
Para ajustar a CERO, presione [CERO].

La medición es iniciada al oprimir [MEDIR].

3.5.2 Reducción del volumen mínimo de medición

El volumen mínimo de medición puede ser reducido a 250 µl, usando apropiada cubeta semi-micro, como es descrito a continuación:

- La tapa del área de trabajo deba ser abierta y la cubeta debe ser retirada de la celda de medición.
- Con un atornillador debe soltarse el tornillo (Fig. 3.5.1) y luego con pinzas debera ser retirado el separador para 500 μl. El separador para 250 μl debe insertarse en lugar de éste.
- El separador para 250 µl debe ser atornillado



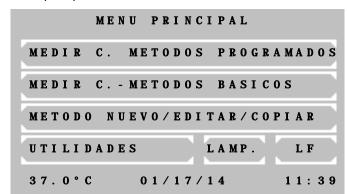

Fig. 3.5.1: área de trabajo

Fig. 3.5.2: separadores

4 SELECCION DE PROGRAMAS DE MEDICION

Después de encender el equipo, el menú principal será mostrado en la pantalla sensible al tacto. Desde este menú es posible acceder a los métodos básicos preprogramados en el sistema o a los métodos específicamente programados por el usuario. Con el editor de métodos es posible crear y modificar métodos propios. Los programas de configuración [UTILIDADES] pueden también ser accedidos desde esta pantalla, las utilidades cubren la configuración y las rutinas de prueba del equipo. La protección de lámpara [LAMP.] y la función de cambio de renglón [LF] son directamente accesibles desde este menú.

Luego de finalizar uno de los métodos de medición o un programa de utilidades, el sistema regresa siempre al menú principal.

Menú principal:

La barra de información muestra de izquierda a derecha:

- la temperatura actual del adaptador de cubeta en °C.
 - Si el módulo térmico está apagado, el valor mostrado alterna entre --.--C y xx.xxC.
 - Si el módulo térmico está encendido y la temperatura es inestable, el valor alterna entre --.--C y, por ejemplo, 37.03C.
 Al estabilizarse la temperatura, ésta será mostrada de manera continua, por ejemplo: 37.01C. Es posible que el valor oscile levemente, esto es completamente normal.
- la fecha en formato: día.mes.año
- la hora

4.1 Medición con métodos programados

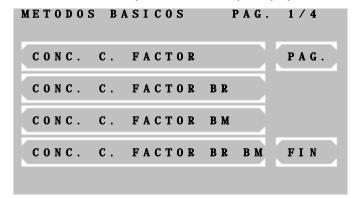
Un método programado para una prueba fotométrica puede ser llamado directamente ingresando el número del método.

El rango válido para un número de método se extiende entre 20 y 250.

Con [+] o [-] es posible desplazarse entre los métodos existentes. En caso de no haber ningún método programado, el sistema dará un mensaje de error en texto (capítulo 9.3 - MENSAJES DE ERROR EN TEXTO).

Para llamar el método seleccionado presione [E].

Para regresar al menú principal, presione [ESC].


Para crear un método programado ingrese a METODO NUEVO / EDITAR / COPIAR desde el menú principal (capítulo 4.3 - Editor de métodos).

Además es posible cargar desde una PC una colección de métodos usando un programa especial.

Para obtener mayor información consulte la documentación del fabricante de reactivos.

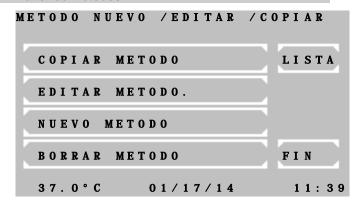
4.2 Medición con métodos básicos

Es posible realizar una prueba fotométrica escogiendo un método preprogramado fijo, pero cuyos parámetros son libremente variables. Existen en total 14 métodos diferentes con distintos procesos de calculación. Cada uno de estos métodos puede servir como prototipo para un método programado por el usuario.

Tipos de medición disponibles:

- Medición de Absorbancia
- Medición de concentración / medición de punto final
- Cinética a Tiempo Fijo / Cinética de dos puntos
- Cinética
- Transmitancia

Presionando [PAG.] es posible desplazarse entre los métodos existentes. El número de la página actual es mostrado en la esquina superior derecha de la pantalla. Presionando [FIN] el programa regresa al menú principal.


Para seleccionar un método presione en la pantalla sobre el área deseada.

Las siguientes abreviaciones son usadas para diferenciar los distintos métodos:

- C = Concentración
- F = Factor
- CTF = Cinética a Tiempo Fijo
- CIN = Cinética
- Br = Blanco de reactivo
- S = Estándar
- Bm = Blanco de muestra

Más información: capítulo: 5 - PROCEDIMIENTOS DE CÁLCULO

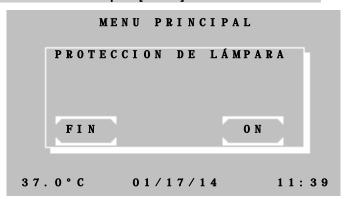
4.3 Editor de métodos

Mediante el editor de métodos es posible almacenar en la memoria del equipo cada prueba fotométrica con sus parámetros.

Las funciones del editor de métodos permiten crear nuevos métodos así como editar o borrar métodos existentes.

Para obtener una lista de los métodos existentes presione [LISTA]. Los datos serán imprimidos y enviados a través de la interfaz serial.

Más información: capítulo: 6 - EDITOR DE METODOS

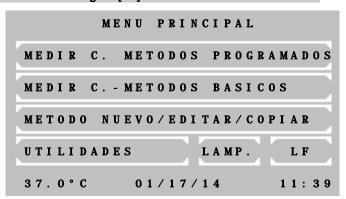

4.4 Utilidades

Las utilidades son necesarias para la configuración y mantención del Fotómetro 4040.

Más información: capítulo: 7 - UTILIDADES

4.5 Protección de lámpara [LAMP.]

Para incrementar la vida útil de la lámpara halógena, presione [LAMP.] desde el menú principal.


Presionando [ON] se activará la protección de lámpara.

Para desactivar la protección de lámpara, presione [OFF].
Después de un tiempo de 60 s, el Fotómetro 4040 está listo para medir.

Para abandonar la función, presione [FIN].

Al desactivar la protección de lámpara, será necesario realizar un nuevo ajuste de cero.

4.6 Cambio de rengión [LF]

Presione [LF], desde el menú principal para lograr un avance de renglón del papel impresor, siempre y cuando el impresor esté activo. Para avanzar varios renglones de forma continua, simplemente mantenga [LF] presionado.

5 PROCEDIMIENTOS DE CÁLCULO

5.1 NOTAS GENERALES

El usuario será guiado a través de la pantalla sensible al tacto mediante una combinación de texto y términos cortos.

Los mensajes del sistema y el ingreso de datos para realizar un método deben ser confirmados con [OK]. Con [FIN] es posible cancelar cada método. Para realizar una nueva medición consulte el capítulo 4 - SELECCION DE PROGRAMAS DE MEDICION. En general es posible iniciar una medición pesionando [MEDIR], el ajuste de cero con [CERO]

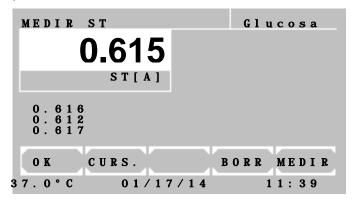
5.1.1 Manipulación del equipo...

Antes de cada medición, asegúrese de cerrar la tapa del área de trabajo.

• Cualquier funcionamiento anormal, causado por el equipo o por el usuario, será notificado por el sitema como un ERROR. Este deberá ser confirmado presionando [E] (capítulo 9 - MENSAJES DE ERROR Y CORRECCION).

Ejemplo: El resultado de la medición sobrepasa el límite del rango programado.

5.1.2 Temperamiento del equipo...


- El ajuste del control de temperatura es un parámetro del método a realizar, en consecuencia, el control de temperatura será encendido o apagado mediante la elección de un determinado método.
- Después de 15 minutos luego de encender el control de temperatura, será alcanzada una temperatura estable de 37 °C.
- La temperatura actual de la cubeta o del adaptador de cubeta de flujo es mostrada en la esquina inferior izquierda de la pantalla. El significado de las entradas mostradas en pantalla está descrito en el capítulo 4 SELECCION DE PROGRAMAS DE MEDICION / menú principal. Cuando la temperatura es inestable o se encuentra fuera del rango de tolerancia durante una medición, el resultado de ésta será marcado con un asterisco (*) en el extremo derecho del renglón correspondiente en la impresión. Para evitar variaciones en los resultados de una medición, debidas a influencias de la temperatura, es posible programar para cada método un tiempo de espera (RETRASO) entre la detonación [MEDIR] y la medición.
- Para agilizar el trabajo de medición, es recomendable temperar externamente, previo a la medición, todas las muestras, reactivos y soluciones de lavado dependientes de la temperatura. Con este fin, puede utilizarse un Incubador RIELE T12/T16 (REF 500-002 / 500-001) o un baño de agua.

5.1.3 Ingreso de datos...

- El formato de entrada para el valor del factor o el estándar, determina el formato de salida o de los resultados con respecto al numero de dígitos de la fracción.
 Ejemplo: El factor "36.8" indica la concentración usando un dígito de fracción.
- Cada factor o estándar puede tener un signo negativo, para que así el resultado final sea calculado correctamente.
 Ejemplo: La prueba GOT es programada con el factor "-1746", ya que el principio de medición se basa
 - en un decremento de la Absorbancia.
- A favor de una solución homogénea, se puede programar un RETRASO para dar tiempo antes de medir en todos los métodos si así se quiere.
- Todos los tiempos de retraso pueden ser cancelados presionando prolongadamente la pantalla sensible al tacto.

5.1.4 Métodos con estándar...

 Cada medición de un estándar (calibrador) puede hacerse como una determinación sencilla, doble o triple. Después de hacer una medición de estándar(por ej. con triple determinación), la siguiente pantalla es mostrada:

En la ventanilla blanca de resultado será mostrado el promedio de la Absorbancia del estándar.

Debajo de la ventanilla de resultado serán mostrados los valores 1, 2 y 3 de la Absorbancia del estándar.

Presionando [OK] se acepta el promedio de los valores mostrados. Valöores con 0 serán ignorados y excluidos del cálculo. El factor resultante será calculado a partir del promedio del estándar.

Con [CURS.] es posible seleccionar un valor. El valor actual es marcado por un cursor blanco intermitente.

Con [BORR] es posible borrar un valor y excluirlo así del cálculo.

Con [MEDIR] se realiza una medición.

- El factor determinado resultante de la medición de un estándar, es grabado junto con el numero de método elegido. Al seleccionar nuevamente este método, este factor será ofrecido como "ANT. STD".
- El principio de la determinación múltiple es extendible a todas las mediciones. La entrada correspondiente puede ser determinada al llamar un método básico. En los métodos programados es posible definir el parámetro (capítulo 6 EDITOR DE METODOS).

5.1.5 Métodos con estándar múltiple...

- Se usa calibración lineal en el caso de dos calibradores, cuando la relación entre Absorbancia y concentración es de carácter lineal (capítulo 7.2.2 Funciones de estándar múltiple).
- Se usa calibración no-lineal para aquellos constituyentes de muestras, cuando la relación Absorbancia-concentración es de carácter no-lineal, pero reproducible. Se requieren al menos tres (máximo 20) calibradores para calibración no-lineal (capítulo 7.2.2 Funciones de estándar múltiple).

5.1.6 Medición bicromática ...

Los procedimientos de cálculo basados en medición de punto final (PC 1 al PC 8, PC 13 y PC 14) pueden ser ejecutados de forma bicromática. El ajuste de cero será entonces realizado con una longitud de onda definida como la longitud de onda bicromática. La longitud de onda bicromática deberá ser eventualmente agregada al set de filtros estándar. La longitud de onda bicromática puede ser elegida luego de llamar un método (capítulo 6 EDITOR DE METODOS Fig. 6.5).

5.1.7 Métodos de cinética...

En una medición de cinética la absorbancia de la muestra es medida en forma secuencal en intervalos de tiempo predeterminados.

El usuario puede definir tanto un tiempo de retraso como la cantidad y duración de los intervalos de tiempo posteriores al tiempo de retraso (Deltas o Δt). Al principio y al final del tiempo de retraso se miden las absorbancias ABS1 y ABS2. La diferencia |ABS.1 - ABS.2| permite distinguir entre actividades normales y anormales.

A continuación se inicia una secuencia de medición en intervalos de tiempo equidistantes (Deltas o Δt). Los resultados de estas mediciones forman una curva, como es mostrada en Fig. 5.1.7.1:

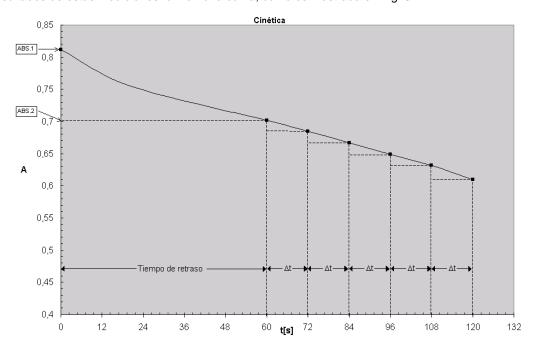
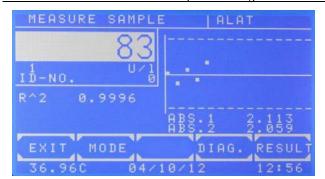


Fig. 5.1.7.1: Curva resultante de un test de cinética con absorbancia decreciente

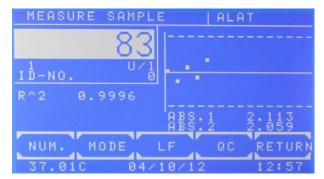
Para cada intervalo de tiempo (Delta o Δt) es calculada la pendiente de la curva. Para obtener la alteración por minuto $\Delta A_{M,Minuto}$, es necesario promediar los valores de pendiente calculados. Con este fin es aplicado un cálculo por regresión lineal simple, el cual entrega entre otras cosas un indicador para la linealidad de la medición, el coeficiente de correlación R. Por razones prácticas en el cálculo de cinética es aplicado el cuadrado del coeficiente de correlación R^2 o coeficiente de determinación. El valor de R^2 puede variar entre 0 y 1. El valor 1 indica una linealidad absoluta, y el 0 indica una relación no lineal. Incluso valores < 0,9 indican una escasa linealidad y por lo tanto una medición defectuosa. En la impresión detallada es posible controlar estos resultados. Para mejorar la linealidad, se utilizarán en el cálculo de la regresión lineal sólo los tres mejores deltas adyacentes. Por eso es necesario programar al menos tres deltas al crear un método nuevo. Sin embargo de no lograrse una mejora considerando sólo tres deltas, serán utilizados todos los deltas en el cálculo.

En la práctica las pruebas lineales muestran valores de R^2 cercanos al 1. En el ejemplo para el Procedimiento de cálculo 11 (CIN/F/BR) son permitidos valores de R^2 ≥ 0,998. Valores de R^2 menores a este último pueden ser causados por ejemplo por variaciones de temperatura, impurezas, reactivos en mal estado, tiempo de retraso inconveniente, entre otros.

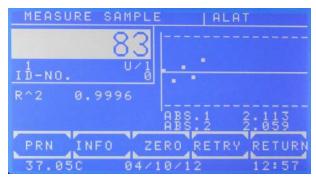

Para mejor supervisión de la linealidad, la cantidad de Deltas (deltas o Δt) escogida debe ser superior a la especificada para los procedimientos manuales de medición. Por ejemplo el clásico test de tres minutos con tres deltas de 60 s puede ser reemplazado por 15 deltas de 12 s.

Al programar un nuevo método basado en PC 11 o en PC 12 con el editor de métodos (ver capítulo 6 - EDITOR DE METODOS, <u>Fig. 6.5</u>), es posible establecer límites inferior y superior para el resultado de la medición ingresando valores en los parámetros MAX. VALOR y MIN. VALOR. Si el valor de la medición supera el valor ingresado en MAX. VALOR el mensaje RANGO MAX. será mostrado. En caso que el valor de la medición sea inferior al límite definido en MIN. VALOR el mensaje RANGO MIN. será mostrado. Además es posible definir un valor minimo para R^2 mediante el parámetro MIN R^2, si el valor de R^2 obtenido en la medición es inferior al valor ingresado en MIN. R^2 el mensaje NON-LINEAR será mostrado.

Para obtener resultados positivos al realizar tests con Absorbancia decreciente (ver Fig. 5.1.7.1), debe ser ingresado un factor negativo. Sólo al ingresar MAX. VALOR y si el signo del resultado de la medición no coincide con el signo del valor ingresado en MAX. VALOR será mostrado el mensaje RANGO +/-.


MAX. VALOR, MIN. VALOR y MIN. R^2 son desactivados al ingresar el valor cero.

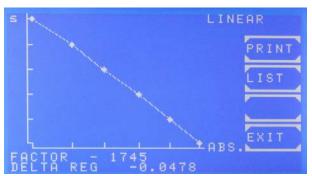
Presentación de los resultados en pantalla luego de realizada una medición:



Vista luego de una medición exitosa

El progreso de la medición cinética es mostrado con [DiAG.].

Vista después de presionar [MODO].

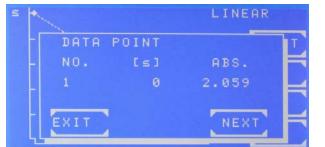


Vista después de presionar [MODO] [MODO]

Con [IMP.] es desactivado el impresor interno. Con [DETAIL] mostrar o imprimir todos los resultados inmediatos.

Con [CERO] es posible repetir el ajuste de cero.

La medición es repetida con [REINT.].


Vista después de presionar [DIAG.]

Luego de algunos segundos el progreso de la cinética será mostrado en pantalla.

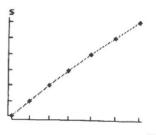
El eje de tiempo es marcado con [s], el eje de absorbancia es marcado con [ABS]

El actual FACTOR en uso y el valor calculado de DELTA REG son mostrados en las líneas inferiores.

Si R^2 está activado, el término LINEAL o NO LINEAL se muestra en la esquina superior derecha. Con [IMPR.] es generada una impresión gráfica. Con [LISTA] son mostrados secuencialmente todos los puntos de medición.

0478

Vista secuencial de los puntos de medición después de presionar [DIAG.] y [LISTA]


Con [CONT.] mostrar el tiempo [s] y el valor de absorbancia para cada punto.

Presentación de los resultados impresos luego de realizada una medición:

PHOTOMETER 4040 # 2250 V6. 8a dd/mm/aa E LABOR: RIELE BERLIN OPER. 1: M. MUSTERMANN FECHA: 07/04/16 HORA: 08: 44: 12 METODO 11: KI N/F/Rb PROC. CALC: FACTOR: 1.000 LONG. DE ONDA: 340nm TEMPERATURA: 37C **RETRASO:** 60s**DELTAS:** 5 UNI DAD: U/l AJUSTE DE CERO

VIEUX Br[E]: 0.000

NR.	EXT.	RESULTADO
1	0. 107	150. 8
	R^2:	0. 9994

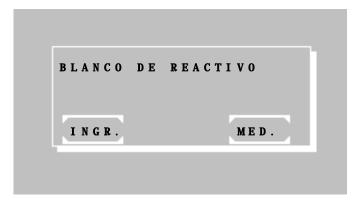
EXT.

NO.	TLEMPO [s]	EXT.
1	0	0. 718
2	30	0. 734
2 3	60	0.750
4	90	0. 767
5	120	0. 785
6	150	0.805
7	180	0.825
	EXT. 1:	0. 642
	EXT. 2:	0.750
	1:	0.0312
	2:	0. 0320
	3: x	0. 0345
	4: x	0.0364
	5: x	0. 0387
	6:	0.0417
	DELTA REG:	0. 0365

EXT = EXT.2 - EXT.1 RESULTADO = DELTA REG x FACTOR

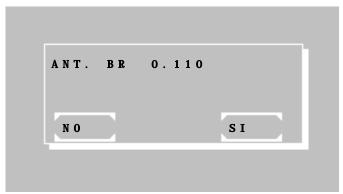
Impresión después de presionar [DIAGR.] y [PRINT]

La crónica de la cinética es impresa. El eje de tiempo es marcado con [s], el eje de absorbancia es marcado con [EXT].


A continuación será impreso un listado de los puntos de medición.

Impresión después de presionar [MODE], [MODE] y [DETAIL].

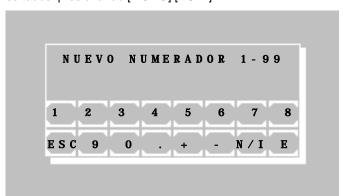
ΔEXT/min


En el caso que sí se mejore la linealidad al utilizar los tres mejores deltas, éstos serán marcados con "x". En caso contrario, serán utilizados todos los deltas en el cálculo de la regresión lineal.

5.1.8 Métodos con blanco de reactivo...

Luego de seleccionar un método con blanco de reactivo (BR), el blanco de reactivo puede ser medido, ingresado manualmente o puesto en cero.

Presione [INGR.] para ingresar manualmente el BR o [MED.] para medirlo.


Al usar un método programado basado en un procedimiento de cálculo con BR, el BR usado será almacenado junto con el número de método correspondiente.

Al seleccionar nuevamente dicho método el BR usado por última vez será ofrecido como "ANT. BR".

Presione [SI] para usar el BR almacenado en memoria o [NO] para ingresar o medir un nuevo BR.

5.1.9 NO. ID. y numerador...

- Todos los resultados de muestras son marcados con un numerador.
- Adicionalmente, todos los resultados pueden ser marcados con un No. ID. de 5 dígitos. Si el No. ID. es distinto de cero será mostrado en pantalla e impreso junto con el resultado de la muestra.
- Luego de haber seleccionado un método el No. ID. o el numerador de un resultado pueden ser editados, presionando [MODO] [NUM.]

Presione [N / I] para seleccionar el modo de edición de numerador o de No. ID.

5.1.10 Almacenamiento de resultados de muestras...

- Todos los resultados de muestras son almacenados automáticamente en memoria. Hasta 1000 resultados pueden ser almacenados de este modo.
- El formato de los datos almacenados es mostrado en Tabla 7.2.4.1
- Los resultados almacenados pueden ser enviados a traves del puerto serial (capítulo 7.2.7).
- Cuando la memoria está llena los resultados más antiguos seran sobreescritos o estos pueden ser previamente enviados a traves del puerto serial y luego borrados de la memoria.

5.2 ABREVIACIONES

ADO E EVE Absorbancia							
ABS , E, EXT Absorbancia							
A _{BR} Absorbancia del blanco de reactivo							
	Absorbancia del blanco de reactivo al tiempo de incubación T ₀						
A _{BR,1} A Tiempo fijo:	_{BR,1} A Tiempo fijo: Absorbancia del blanco de reactivo al tiempo de reacción T ₁						
A _{BBR} Absorbancia del blanco de blanco de reactivo							
A _M Absorbancia de	A _M Absorbancia de la muestra						
A _{M,0} A Tiempo Fijo:	Absorbancia de la muestra al tiempo de incubación T ₀						
A _{M,1} A Tiempo Fijo:	Absorbancia de la muestra al tiempo de reacción T ₁						
A _{BM} Absorbancia del	blanco de muestra						
A _{ST} Absorbancia del	estándar						
A _{ST,0} A Tiempo Fijo:	Absorbancia del estándar al tiempo de incubación T ₀						
A _{ST,1} A Tiempo Fijo:	Absorbancia del estándar al tiempo de reacción T ₁						
A _{BST} Absorbancia del	blanco de estándar						
B _{BR} Blanco del blanc	co de reactivo						
B _R Blanco de reacti	vo						
B _M Blanco de mues	tra						
CConcentración							
C _{ST} Concentración d	lel estándar						
CINCinética							
CTFCinética a Tiemp	oo Fijo						
CVControl de calida	ad: coeficiente de variación						
dA/minen Cinética:	ΔA / min						
ΔA _{BR,Minute} En Cinética:	Cambio del blanco de reactivo por minuto(medido como ΔA / min.)						
ΔA _{M,Minute} En Cinética:	Cambio de la muestra por minuto(medido como ΔA / min.)						
FFactor	,						
	ad: cantidad de resultados de medición						
nmNanometros (dir							
MMuestra							
	ad: promedio de los resultados de medición						
mControl de calidad: promedio de los resultados de medición RResultado, Muestra							
R^2En Cinética:	El cuadrado del coeficiente de correlación						
TV ZEll Ollictica.	o coeficiente de determinación, muestra la linealidad de la prueba.						
S, ST Estándar	o coefficiente de determinación, muestra la inicalidad de la proesa.						
STb							
s							
TRANSM., T Transmitancia en %							
Transmi, T Parismitancia en % T ₀							
• •	·						
T ₁ A Tiempo Fijo:	Tiempo de reacción en segundos						
T ₁ En Cinética:	Tiempo por delta en segundos						

5.3 SUMARIO DE LOS PROCEDIMIENTOS DE CÁLCULO

La siguiente tabla ofrece una vista general de los procedimientos de cálculo, los cuales forman la base de todos los métodos descritos en la lista de métodos. El criterio usado es la característica del procedimiento de cálculo (ver abajo). Una descripción detallada de la ejecución de cada método se encuentra en el siguiente capítulo 5.4 - DESCRIPCION DE LA EJECUCION DE LOS METODOS.

PC-No.	Característica	Método	Fórmula de cálculo
PC 1	C/F	Punto final con factor	$C = F * A_M$
PC 2	C/F/B _R	Punto final con factor	$C = F * (A_M - A_{BR})$
PC 3	C/F/B _M	Punto final con factor	$C = F * A_M - A_{BM} $
PC 4	C/F/B _M B _R	Punto final con factor	$C = F * (A_M - A_{BM} - A_{BR} - A_{BBR})$
PC 5	C/S	Punto final con estándar	$C = F * A_M$
PC 6	C/S/B _R	Punto final con estándar	$C = F * (A_M - A_{BR})$
PC 7	C/S/B _M	Punto final con estándar	$C = F * A_M - A_{BR} $
PC 8	C/S/B _M B _R	Punto final con estándar	$C = F * (A_M - A_{BM} - A_{BR} - A_{BBR})$
PC 9	CTF/F/B _R	Tiempo fijo con factor	$C = F * (A_{M,0} - A_{M,1} - A_{BR,0} - A_{BR,1})$
PC 10	CTF/S/B _R	Tiempo fijo con estándar	$C = F * (A_{M,0} - A_{M,1} - A_{BR,0} - A_{BR,1})$
PC 11	CIN/F/B _R	Cinética con factor	$C = F * (\Delta A_{M,Minute} - \Delta A_{BR,Minute})$
PC 12	CIN/S/B _R	Cinética con estándar	$C = F * (\Delta A_{M,Minute} - \Delta A_{BR,Minute})$
PC 13	TRANSM.	Transmitancia en %	
PC 14	C/F DELTA	Punto final con factor	$C = F * (\Delta A_{M2-Bm2} - \Delta A_{M1-Bm1})$
PC 15	C/F 3 LO	Medición con 3 longitudes de onda	$C = 168 * A_{415nm} - 84 * A_{380nm} - 84 * A_{450nm}$
PC 16	DELTA R1R2	Medición de diferencia de dos	$C = \Delta A_S$
		reactivos	

Leyenda:

PC-No	Número del procedimiento de cálculo (capítulo 6 - EDITOR DE METODOS)
Característica	Nombre del método del procedimiento de cálculo (capítulo 12.1 - METODOS BASICOS)
Fórmula de cálculo	Base de cálculo de los métodos básicos

5.4 DESCRIPCION DE LA EJECUCION DE LOS METODOS

En cada descripción de los procedimientos de cálculo se encuentra al lado izquierdo una muestra de la impresión realizada con el impresor integrado.

Todas las impresiones son encabezadas por la información de equipo, los datos del laboratorio y los parámetros del método a ejecutar. A continuación se imprimen los datos necesarios para una verificación manual de los resultados.

La ventanilla de medición

La configuración de la ventanilla de medición es la misma para todos los procesos de cálculo. Dependiendo del método escogido puede variar la cantidad de resultados o gráficos mostrados.

Funciones de las teclas de acciones en la ventanilla de medición:

[FIN] Exige la confirmación por parte del usuario para terminar el programa de medición.

[MODO] Ocupa las teclas de función con los siguientes posibles modos:

[NUM.]	[MODO]	[LF]	[CC]	[REGR.]
[IMPR.]	[DETAIL]	[LAMP.]	[M-STD]	[REGR.]
[IMPR.]	[DETAIL]	[CERO]	[REINT.]	[REGR.]
[IMPR.]	[DETAIL]	[CERO]	[E1/E2]	[REGR.]

[CERO] Inicia el ajuste de CERO.

[MEDIR] Inicia la medición.

Funciones MODO:

[NUM.] Editar numerador o No. ID (capítulo 5.1.9)

[LF] Avanzar una línea en impresor.

[CC] Funciones de control de calidad.

[IMPR.] Encender o desconectar impresor / [HORA] impresión de la hora actual.

[DETAIL] Mostrar/Imprimir detalle de resultados en cinética.

[LAMP.] Protección de lámpara halógena (capítulo 4.5).

[M-STD] Multi Standard.

[E1/E2] Cambiar a medición de E2 (capítulo 5.4.14)

[REINT.] Repetir una medición

[REGR.] Regresar a funciones normales.

5.4.1 Procedimiento de cálculo 1 (C/F)

Procedimiento en el cual se multiplica el valor de la muestra A_{M} por un factor F predefinido o por ingresar.

Procedimiento de cálculo	PC 1
Característica	C/F
Método	Punto final con Factor
Fórmula de cálculo	C = F * A _M
Factor	predefinido / ingresar

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 20: HEMOGLOBI NA	
PROC. CALC: 1	La ventanilla de medición será mostrada en pantalla.
FACTOR: 29. 4	
LONG. DE ONDA: 405nm	
TEMPERATURA: 37C	
RETRASO: 5s	
MAX. UNI DADES: 25	
UNI DAD: g/l	
	Ejecución de la medición:
AJUSTE DE CERO	→Presentar y medir la solución de CERO
NO. ABS. RESULTADO	
1 0. 675 19. 8	
2 0.843 24.8	→ Presentar y medir la solución de muestra
	NP
	→ Presentar y medir la solución de muestra

5.4.2 Procedimiento de cálculo 2 (C/F/B_R)

Procedimiento en el cual la diferencia entre el valor de Absorbancia de la muestra A_M y el de la Absorbancia del blanco de reactivo A_{BR} se multiplica por un Factor F predefinido. El valor de Absorbancia del blanco de reactivo A_{BR} es ingresado o medido sólo una vez.

Procedimiento de cálculo	PC 2
Característica	
Método	Punto final con Factor
Fórmula de cálculo	C = $F * (A_M - A_{BR})$
Factor	predefinido / ingresar
Blanco de reactivo	ingresar o medir

La elección del método se inicia desde el menú principal.
Ver capítulo:
4.1 Medición con métodos programados
4.2 Medición con métodos básicos
Al encontrarse el impresor activo serán imprimidos los datos del
método.
La ventanilla de medición será mostrada en pantalla.
Ejecución de la medición:
→Presentar y medir la solución de CERO
→Presentación y medición del blanco de reactivo o ingrese el valor del blanco de reactivo en Absorbancia
→Presentar y medir la solución de muestra
→Presentar y medir la solución de muestra
→Presentar y medir la solución de muestra

5.4.3 Procedimiento de cálculo 3 (C/F/B_M)

Procedimiento en el cual la diferencia entre el valor de Absorbancia de la muestra A_M y el valor de Absorbancia del blanco de muestra A_{BM} se multiplica por un Factor F predefinido. La Absorbancia del blanco de muestra A_{BM} es medida antes de cada prueba.

Procedimiento de cálculo	PC 3
Característica	C / F / B _M
Método	Punto final con factor
Fórmula de cálculo	$C = F * A_M - A_{BM} $
Factor	predefinido / ingresar

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 23: BILIRRUBINA	
PROC. CALC.: 3	La ventanilla de medición será mostrada en pantalla.
FACTOR: 12. 80	
LONG. DE ONDA: 546nm	
TEMPERATURA: 37C	
RETRASO: 5s	
MAX. UNI DADES: 8. 0	
UNI DAD: mg/dl	
	Ejecución de la medición:
AJUSTE DE CERO	→Presentar y medir la solución de CERO
NO ARG PEGULTARO	
NO. ABS. RESULTADO	-> Drocentor y modir la calución blance de muestro
1 1.000 4.21	 →Presentar y medir la solución blanco de muestra →Presentar y medir la solución de muestra
Bm[A]: 0.671	7 Presentar y medir la solucion de muestra
2 1. 215 4. 25	→Presentar y medir la solución blanco de muestra
Bm[A]: 0.884 3 1.033 4.23	→ Presentar y medir la solución de muestra
0 1,000 1,20	71 163611ai y medii la solucion de muestra
Bm[A]: 0.702	→Presentar y medir la solución blanco de muestra
	→ Presentar y medir la solución de muestra
	71 1636 Hair y medii la 301461011 de muestra

5.4.4 Procedimiento de cálculo 4 (C/F/B_MB_R)

Procedimiento en el cual la diferencia entre el valor de Absorbancia del blanco de reactivo A_{BR} y el valor de Absorbancia del blanco del blanco de reactivo A_{BBR} es restada de la diferencia entre el valor de Absorbancia de la muestra A_{M} y el valor de Absorbancia del blanco de muestra A_{BM} . Este resultado es entonces multiplicado por un Factor F predefinido.

La Absorbancia del blanco de muestra A_{BM} es medida antes de cada prueba. La Absorbancia del blanco de reactivo A_{BR} es medido o ingresado sólo una vez.

Procedimiento de cálculo	PC 4
Característica	C / F / B _M B _R
Método	Punto final con factor
Fórmula de cálculo	$C = F * (A_M - A_{BM} - A_{BR} - A_{BBR})$
Factor	predefinido / ingresar
Blanco de reactivo	ingresar o medir

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 24: Fe	
PROC. CALC.: 4	La ventanilla de medición será mostrada en pantalla.
FACTOR: 1330	
LONG. DE ONDA: 578nm	
TEMPERATURA: 37C	
RETRASO: 5s	
MI N. UNI DADES: 37	
MAX. UNI DADES: 158	
UNI DAD: ug/dl	
	Ejecución de la medición:
AJUSTE DE CERO	→ Presentar y medir la solución de CERO
B [4] 0 007	N Dragantar y madir al blanca da blanca da reactiva
Br[A]: 0.085	→ Presentar y medir el blanco de blanco de reactivo
Bbr[A]: 0. 198	→ Presentar y medir el blanco de reactivo
DELTA Br: 0.113	(Blanco resultante)
NO. ABS. RESULTADO	
1 0.715 154	→Presentar y medir la solución blanco de muestra
Bm[A]: 0.486	→Presentar y medir la solución de muestra
2 0.646 49	·
Bm[A]: 0. 497	→Presentar y medir la solución blanco de muestra
2	→Presentar y medir la solución de muestra

5.4.5 Procedimiento de cálculo 5 (C/S)

Procedimiento en el cual el valor de Absorbancia de la muestra A_M se multiplica por un Factor F que es determinado midiendo la Absorbancia de la solución estándar C_{ST} , cuya concentración es conocida.

Procedimiento de cálculo	PC 5
Característica	
Método	Punto final con estándar
Fórmula de cálculo	C = F * A _M
Factor resultante	$F = C_{ST} / A_{ST}$

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RIELE BERLIN	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 25: GLUCOSA	
PROC. CALC.: 5	La ventanilla de medición será mostrada en pantalla.
ESTANDAR: 5. 55	
LONG. DE ONDA: 546nm	
TEMPERATURA: 37C	
RETRASO: 35	
MAX. UNI DADES: 22. 2	
UNI DAD: mmol /1	
	Figure 16 de la gradición
AJUSTE DE CERO	Ejecución de la medición:
	→ Presentar y medir la solución de CERO
ST[A] 1: 1.110	→Presentar y medir solución estándar 1
ST[A] 2: 1.093	→ Presentar y medir solución estandar 1
ST[A] 3: 1.059	→ Presentar y medir solución estándar 3 (opcional)
	71 Tesental y medil solucion estandal 5 (opcional)
ST[A]: 1.088	(estándar promedio)
FACTOR: 5. 10	(Factor resultante)
	(i dotor resultante)
NO. ABS. RESULTADO	
1 1.026 5.23	
2 1. 357 6. 92	
3 1.582 8.07	→Presentar y medir la solución de muestra
	→Presentar y medir la solución de muestra
	→Presentar y medir la solución de muestra

5.4.6 Procedimiento de cálculo 6 (C/S/B_R)

Procedimiento en el cual la diferencia entre el valor de Absorbancia de la muestra A_M y el valor de Absorbancia del blanco de reactivo A_{BR} se multiplica por un Factor F que es determinado midiendo la Absorbancia de la solución estándar A_{ST} , cuya concentración C_{ST} es conocida, y considerando el valor de Absorbancia del blanco de reactivo A_{BR} .

La Absorbancia del blanco de reactivo A_{BR} es medido o ingresado sólo una vez.

Procedimiento de cálculo	PC 6
Característica	C / S / B _R
Método	Punto final con estándar
Fórmula de cálculo	
Factor resultante	
Blanco de reactivo	ingresar o medir

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6. 8a dd/mm/aa E	4.1 Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 26: SODIUM	
PROC. CALC.: 6	La ventanilla de medición será mostrada en pantalla.
ESTANDAR: 150. 0	
LONG. DE ONDA: 405nm	
TEMPERATURA: 37C	
RETRASO: 3s	
MAX. UNI DADES: 300	
UNI DAD: mmol /1	
	Ejecución de la medición:
AJUSTE DE CERO	→Presentar y medir la solución de CERO
Br[A]: 0.108	→Presentar y medir el blanco de reactivo
ST[A] 1: 1.112	→Presentar y medir solución estándar 1
ST[A] 2: 1.132	→ Presentar y medir solución estándar 2 (opcional)
ST[A] 3: 1.118	→ Presentar y medir solución estándar 3 (opcional)
51[.1] 6. 1.116	
ST[A]: 1. 121	(estándar promedio)
FACTOR: 148. 2	(Factor resultante)
NO. ABS. RESULTADO	
1 1.449 198.7	
2 1.118 149.6	→Presentar y medir la solución de muestra
5 2.006 281.2	
	→Presentar y medir la solución de muestra
	→Presentar y medir la solución de muestra

5.4.7 Procedimiento de cálculo 7 (C/S/B_M)

Procedimiento en el cual la diferencia entre el valor de Absorbancia de la muestra A_M y el valor de Absorbancia del blanco de muestra A_{BM} se multiplica por un Factor F que es determinado midiendo la Absorbancia de la solución estándar A_{ST} , cuya concentración C_{ST} es conocida, y considerando el valor de Absorbancia del blanco del estándar A_{BST} .

La Absorbancia del blanco de muestra A_{BM} es medida antes de cada prueba.

Procedimiento de cálculo	PC 7
Característica	
Método	Punto final con estándar
Fórmula de cálculo	$\dots C = F * A_M - A_{BM} $
Factor resultante	$F = C_{ST} / A_{ST} - A_{STB} $

radio resultante	
	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RIELE BERLIN	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 27: UREA COL	
PROC. CALC.: 7	La ventanilla de medición será mostrada en pantalla.
ESTANDAR: 50.0	·
LONG. DE ONDA: 546nm	
TEMPERATURA: 37C	
RETRASO: 3s	
MAX. UNI DADES: 220	
UNI DAD: mg/dl	
	Ejecución de la medición:
AJUSTE DE CERO	→Presentar y medir la solución de CERO
	→Presentar y medir el blanco del estándar
ST[A] 1: 0.614	→Presentar y medir solución estándar 1
ST[A] 2: 0.629	→Presentar y medir solución estándar 2 (opcional)
ST[A] 3: 0.620	→Presentar y medir solución estándar 3 (opcional)
51[11] 5. 0.020	(estándar promedio)
ST[A]: 0.621	(blanco del estándar)
STb[A]: 0.106	(estándar promedio menos blanco del estándar)
DELTA ST: 0.515	(Factor resultante)
FACTOR: 97. 1	
NO. ABS. RESULTADO	→Presentar y medir la solución blanco de muestra
1 2. 292 197. 6	→Presentar y medir la solución de muestra
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
2 2.340 198.0	→Presentar y medir la solución blanco de muestra
	→Presentar y medir la solución de muestra
	71 Toodhar y Modii id Soldoloff do Midostia
	→Presentar y medir la solución blanco de muestra
Bm[A]: 0.193	→ Presentar y medir la solución de muestra
	71 Tesemai y medii la solucion de muestra

5.4.8 Procedimiento de cálculo 8 (C/S/B_MB_R)

Procedimiento en el cual la diferencia entre el valor de Absorbancia del blanco de reactivo A_{BR} y el valor de Absorbancia del blanco de blanco de reactivo A_{BBR} se resta de la diferencia entre el valor de Absorbancia de la muestra A_{M} el valor de Absorbancia del blanco de muestra A_{BM} . Esta diferencia se multiplica entonces por un Factor F que es determinado midiendo la Absorbancia de un solución estándar A_{ST} , cuya concentración C_{ST} es conocida, y considerando el valor del blanco del estándar A_{BST} y la diferencia entre el valor de Absorbancia del blanco de reactivo A_{BR} y el valor de Absorbancia del blanco del blanco de reactivo A_{BR} .

La Absorbancia del blanco de muestra A_{BM} es medida antes de cada prueba. La Absorbancia del blanco de reactivo A_{BR} es medido o ingresado sólo una vez.

Procedimiento de cálculo	PC 8
Característica	C / S / B _M B _R
Método	Punto final con estándar
Fórmula de cálculo	$C = F * (A_M - A_{BM} - A_{BR} - A_{BBR})$
Factor resultante	$F = C_{ST} / (A_{ST} - A_{STB} - A_{BR} - A_{BBR})$
Blanco de reactivo	ingresar o medir

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 28: Ca	
PROC. CALC.: 8	La ventanilla de medición será mostrada en pantalla.
ESTANDAR: 8. 02	
LONG. DE ONDA: 546nm	
TEMPERATURA: 37C	
RETRASO: 3s	
MAX. UNI DADES: 12	
UNI DAD: mg/dl	
	Ejecución de la medición:
AJUSTE DE CERO	→ Presentar y medir la solución de CERO
Br[A]: 0.150	→Presentar y medir el blanco del blanco de reactivo
Bbr[A]: 0.046	→ Presentar y medir el blanco del reactivo
DELTA Br: 0.104	(Blanco resultante)
	→Presentar y medir el blanco del estándar
ST[A] 1: 1.485	→Presentar y medir solución estándar 1
ST[A] 2: 1.521	→ Presentar y medir solución estándar 2 (opcional)
ST[A] 3: 1.495	→ Presentar y medir solución estándar 3 (opcional)
ST[A]: 1.501	(Estándar promedio)
STb[A]: 0. 479	(Blanco del estándar)
DELTA ST: 1.022	(Estándar promedio menos blanco del estándar)
FACTOR: 8. 74	(Factor resultante)
NO. ABS. RESULTADO	
1 1.495 7.89	→ Presentar y medir la solución blanco de muestra
Bm[A]: 0.489	→Presentar y medir la solución de muestra
2 1. 542 7. 89	
Bm[A]: 0.535	→ Presentar y medir la solución blanco de muestra
3 1. 394 8. 39	→ Presentar y medir la solución de muestra
Bm[A]: 0.329	→Presentar y medir la solución blanco de muestra
	→ Presentar y medir la solución de muestra

5.4.9 Procedimiento de cálculo 9 (CTF/F/B_R)

En este método se mide la Absorbancia del blanco de reactivo después de un tiempo de incubación (\Rightarrow A_{BR,0}) y después de un tiempo de reacción (\Rightarrow A_{BR,1}) y del mismo modo se hace con la muestra, se mide la Absorbancia después de un tiempo de incubación (\Rightarrow A_{M,0}) y después del tiempo de reacción (\Rightarrow A_{M,1}).

La diferencia resultante del cambio en la prueba y el cambio en el blanco de reactivo es multiplicada por el factor F predefinido. El blanco de reactivo A_{BR} es ingresado o medido solamente una vez.

Mientras se lleva a cabo el curso de un método, el dialogo interactivo solicita el uso de un blanco de reactivo, La condición por defecto es siempre OFF. Para continuar sin usar blanco de reactivo, se requiere confirmar oprimiendo [ENTRE].

Luego de cada medición, es posible medir la siguiente muestra presionando [CONT.]. Para realizar una nueva medición de la misma muestra debe presionarse [MEDIR].

Procedimiento de cálculo	PC 9
Característica	CTF / F / B _R
Método	Cinética de tiempo fijo con Factor
Fórmula de cálculoC	$E = F * (A_{M,0} - A_{M,1} - A_{BR,0} - A_{BR,1})$
Factor	predefinido / ingresar
Blanco de reactivo	ingresar o medir

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6. 8a dd/mm/aa E	4.1 Medición con métodos programados
LABOR: RIELE BERLIN	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	1.2 Wodioion oon motodoo badiood
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 29: CK-MB	
PROC. CALC.: 9	La ventanilla de medición será mostrada en pantalla.
FACTOR: 2751. 3	
LONG. DE ONDA: 340nm	
TEMPERATURA: 37C	
INCUBACION: 120s	
REACCION: 180s	
MAX. UNI DADES: 1500	
UNI DAD: U/1	
	Ejecución de la medición:
AJUSTE DE CERO	→ Presentar y medir la solución de CERO
Br[A]: 0.000	Sin blanco de reactivo (opcional ingresar / medir)
NO. ABS. RESULTADO	
1 1.005 910.7	
DELTA [A]: 0.331	→Presentar y medir la solución de muestra
2 1. 029 1128. 1	
DELTA [A]: 0.410	
3 0. 829 1381. 2	→ Presentar y medir la solución de muestra
DELTA [A]: 0.502	
	→Presentar y medir la solución de muestra

5.4.10 Procedimiento de cálculo 10 (CTF/S/B_R)

En este método se mide la Absorbancia del blanco de reactivo después de un tiempo de incubación (\Rightarrow A_{BR,0}) y después de un tiempo de reacción (\Rightarrow A_{BR,1}) y del mismo modo se hace con la muestra, se mide la Absorbancia después de un tiempo de incubación (\Rightarrow A_{M,0}) y después del tiempo de reacción (\Rightarrow A_{M,1}). La diferencia resultante del cambio en la prueba y el cambio en el blanco de reactivo es multiplicada por el factor F, el cual se determina a partir de la diferencia en Absorbancia entre el cambio en la solución estándar medida al tiempo de incubación y al tiempo de reacción |A_{ST,0}-A_{ST,1}|, y el cambio en el blanco del estándar de igual modo leído al tiempo de incubación y tiempo de reacción |A_{BR,0}-A_{BR,1}|, El blanco de reactivo A_{BR} es ingresado o medido solamente una vez.

Mientras se lleva a cabo el curso de un método, el dialogo interactivo solicita el uso de un blanco de reactivo, La condición por defecto es siempre OFF. Para continuar sin usar blanco de reactivo, se requiere confirmar oprimiendo [ENTRE].

Luego de cada medición, es posible medir la siguiente muestra presionando [CONT.]. Para realizar una nueva medición de la misma muestra debe presionarse [MEDIR].

Procedimiento de cálcu	ıloPC 10
Característica	CTF / S / B _R
Método	Cinética de tiempo fijo con estándar
Fórmula de cálculo	$C = F * (A_{M,0} - A_{M,1} - A_{BR,0} - A_{BR,1})$
Factor resultante	$F = C_{ST} / (A_{ST,0}-A_{ST,1} - A_{BR,0}-A_{BR,1})$
Blanco de reactivo	ingresar o medir

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 30: CREATININ	
PROC. CALC.: 10	La ventanilla de medición será mostrada en pantalla.
ESTANDAR: 2.00	
LONG. DE ONDA: 492nm	
TEMPERATURA: 37C	
INCUBACION: 45s	
REACCION: 60s	
MAX. UNI DADES: 25	
UNI DAD: mg/dl	
	Ejecución de la medición:
AJUSTE DE CERO	→ Presentar y medir la solución de CERO
Br[A]: 0.000	Sin blanco de reactivo (opcional ingresar / medir)
DELTA Br: 0.000	
	→Presentar y medir solución estándar 1
ST/CIN 1: 0.194	→Presentar y medir solución estándar 2 (opcional)
ST/CIN 2: 0.203	→Presentar y medir solución estándar 3 (opcional)
ST/CIN 3: 0.214	(estándar promedio)
ST/CIN: 0.204	(blanco del estándar)
FACTOR: 9.80	
NO. ABS. RESULTADO	
1 0. 326 9. 84	→Presentar y medir la solución de muestra
DELTA [A]: 1.005	
2 0. 336 10. 81	
DELTA [A]: 1.103	→Presentar y medir la solución de muestra
3 0. 329 12. 84	
DELTA [A]: 1.310	
	→Presentar y medir la solución de muestra

5.4.11 Procedimiento de cálculo 11 (CIN/F/B_R)

En este método la muestra M se mide varias veces (dependiendo del numero de deltas) en una secuencia de tiempos equidistantes. De los valores de Absorbancia resultantes se tendrá una alteración por minuto $\Delta A_{M,Minute}$ que se calcula por regresión lineal. El blanco de reactivo $\Delta A_{BR,Minute}$ es medido de la misma forma que la muestra (o entrado directamente en U/I) y restado del valor de la muestra. Esta diferencia se multiplica por el factor predefinido o por ingresar F. Al realizar un test de cinética con Absorbancia decreciente el factor F debe tener signo negativo (por ej.: -1746) para obtener un resultado positivo. El factor F debe ser positivo para tests con Absorbancia creciente.

Mientras se lleva a cabo el curso de un método, el dialogo interactivo solicita el uso de un blanco de reactivo, La condición por defecto es siempre OFF. Para continuar sin usar blanco de reactivo, se requiere confirmar oprimiendo [ENTRE].

Procedimiento de cálculo	PC 11
Característica	CIN / F / B _R
Método	Cinética con Factor
Fórmula de cálculo	$C = F * (\Delta A_{M,Minute} - \Delta A_{BR,Minute})$
Factor	predefinido / ingresar
Blanco de reactivo	ingreasr o medir
Cantidad de Deltas	ingresar (3 a 19)
Tiempo por Delta	ingresar (4 s a 255 s)

PHOTOMETER 4040 # 2250 V6. 8a dd/mm/aa E LABOR: RI ELE BERLI N		
OPER	. 1: M. MUST	ΓERMANN
FECH	A :	07/04/16
HORA	:	08: 44: 12
METO	DO 31:	GOT
PROC.	. CALC. :	11
FACT	OR:	- 1746. 0
LONG	. DE ONDA:	340nm
TEMP	ERATURA:	37C
RETR	ASO:	60s
DELT	AS:	5
TI EM	PO/DELTA:	18s
MAX. UNI DADES:		280
MI N. R^2:		0. 998
UNI DAD:		U/l
	AJUSTE DE	CERO
	Br[A]:	0.000
	DELTA Br	·: 0. 000
	R^2:	0. 9762
NO.	ABS.	RESULTADO
1	0. 123	189
_	R^2:	0. 9996
2	0. 154	189

R^2:

R^2:

0.209

3

0.9993

1.0000

96

La elección del método se inicia desde el menú principal. Ver capítulo:

4.1 Medición con métodos programados

4.2 Medición con métodos básicos

Al encontrarse el impresor activo serán imprimidos los datos del método.

La ventanilla de medición será mostrada en pantalla.
ESTE EJEMPLO MUESTRA UN Factor negativo, que genera un resultado final positivo para una Absorbancia decresciente.
Durante el tiempo de retraso, el valor de Absorbancia de la muestra será constantemente actualizado.
Al principio y al final del tiempo de retraso se miden

Al principio y al final del tiempo de retraso se miden respectivamente los valores de Absorbancia ABS1 y ABS2.

Ejecución de la medición:

→Presentar y medir la solución de CERO

Sin blanco de reactivo (opcional ingresar / medir)

→ Presentar y medir la solución de muestra Numerador / |ABS.1 – ABS.2| / Resultado

R^2: coeficiente de determinación, para control de linealidad de la prueba (ver capítulo 5.1.7 Métodos de cinética...).

→ Presentar y medir la solución de muestra

→Presentar y medir la solución de muestra Impresión detallada de ABS.1, ABS.2 y Deltas

Una impresión detallada de ABS. 1, ABS. 2 y Deltas puede ser obtenida después de cada medición presionando [MODO] [MODO] [DETAIL] (ver capítulo 5.1.7 Métodos de cinética...).

5.4.12 Procedimiento de cálculo 12 (CIN/S/B_R)

En este método la muestra M se mide varias veces (dependiendo del numero de deltas) en una secuencia de tiempos equidistantes. De los valores de Absorbancia resultantes se tendrá una alteración por minuto $\Delta A_{M,Minute}$ que se calcula por regresión lineal. El blanco de reactivo $\Delta A_{BR,Minute}$ es medido de la misma forma que la muestra (o entrado directamente en U/I) y restado del valor de la muestra. Esta diferencia se multiplica por el factor F. el cual se determina midiendo la Absorbancia de una solución estándar $\Delta A_{ST,Minute}$ de concentración conocida C_{ST} y tomando en consideración el blanco de reactivo $\Delta A_{BR,Minute}$.

Mientras se lleva a cabo el curso de un método, el dialogo interactivo solicita el uso de un blanco de reactivo, La condición por defecto es siempre OFF. Para continuar sin usar blanco de reactivo, se requiere confirmar oprimiendo [ENTRE].

Procedimiento de cálculo	PC 12
Característica	CIN / S / B _R
Método	Cinética con Estándar
Fórmula de cálculo	$C = F * (\Delta A_{M,Minute} - \Delta A_{BR,Minute})$
Factor resultante	$F = C_{ST} / (\Delta A_{ST,Minute} - \Delta A_{BR,Minute})$
Blanco de reactivo	ingresar o medir
Cantidad de Deltas	ingresar (3 a 28)
	ingresar (4 s a 255 s)
Factor resultante Blanco de reactivo Cantidad de Deltas	$F = C_{ST} / \left(\Delta A_{ST,Minute} - \Delta A_{BR,Minute} \right)$ ingresar o mediringresar (3 a 28)

петтр	о рог Бена	
V6. 8a LABOR	METER 4040 dd/mm/aa : RIELE F	a E BERLIN
	1: M. MUSTI	
FECHA	:	07/04/16
HORA:		08: 44: 12
		JREA
ESTAN	CALC.:	12 80. 0
	DAR: DE ONDA:	
	CRATURA:	3401III 37C
RETRA		3rc 3s
DELTA		5
	O/DELTA:	5s
MI N. R		0. 998
UNI DA	D:	mg/dl
A	JUSTE DE (CERO
	Br[A]:	0.000
	Br/KIN:	0.000
	R^2:	0. 1973
	ST/CIN 1:	0. 327
	R^2:	0. 9996
	ST/CIN 2:	0. 330
	R^2:	0. 9989
	ST/CIN 3:	
	R^2:	0. 9994
	ST/CIN:	
	FACTOR:	244. 3
NO.		RESULTADO
1	0. 232	41. 5

La elección del método se inicia desde el menú principal. Ver capítulo:

- 4.1 Medición con métodos programados
- 4.2 Medición con métodos básicos

Al encontrarse el impresor activo serán imprimidos los datos del método.

La ventanilla de medición será mostrada en pantalla.

Durante el tiempo de retraso, el valor de Absorbancia de la muestra será constantemente actualizado. Al principio y al final del tiempo de retraso se miden respectivamente los valores de Absorbancia ABS.1 y ABS.2.

Ejecución de la medición:

→Presentar y medir la solución de CERO

Sin blanco de reactivo (opcional ingresar / medir)

- →Presentar y medir solución estándar 1
- → Presentar y medir solución estándar 2 (opcional)
- → Presentar y medir solución estándar 3 (opcional)

(estándar promedio) (blanco del estándar)

→ Presentar y medir la solución de muestra Numerador / |ABS.1 – ABS.2| / Resultado R^2: coeficiente de determinación, para control de linealidad de la prueba (ver capítulo 5.1.7 Métodos de cinética...).

→ Presentar y medir la solución de muestra

Una impresión detallada de ABS. 1, ABS. 2 y Deltas puede ser obtenida después de cada medición presionando [MODO] [MODO] [DETAIL] (ver capítulo 5.1.7 Métodos de cinética...).

R^2:

0.175

2

0.9984

0.9997

81.8

5.4.13 Procedimiento de cálculo 13 (TRANSMITANCIA)

Procedimiento de cálculo PC 13 Característica T en %

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6. 8a dd/mm/aa E	4.1 Medición con métodos programados
LABOR: RIELE BERLIN	4.2 Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 13: TRANSM.	
PROC. CALC.: 13	La ventanilla de medición será mostrada en pantalla.
FACTOR: 1.0	
LONG. DE ONDA: 546nm	
TEMPERATURA: 37C	
RETRASO: 2s	
UNI DAD: %	
	Ejecución de la medición:
MEDICION 100%	→Presentar y medir la solución de CERO
NO. ABS. RESULTADO	
1 0. 329 46. 9	→Presentar y medir la solución de muestra
2 1.004 9.9	→Presentar y medir la solución de muestra
3 2. 020 1. 0	→ Presentar y medir la solución de muestra

5.4.14 Procedimiento de cálculo 14 (C/F Delta)

En este procedimiento se mide varias veces (dependiendo de la cantidad de muestras) la diferencia entre las muestras E2 – E1. En la primera fase se miden las muestras E1 (max. 25) a elección con o sin blanco de muestra. Después de transcurrido un tiempo de medición determinado por el usuario, en la segunda fase, serán medidas las pruebas E2. Para excluir la posibilidad de errores en la medición se debe poner especial atención a la secuencia de las muestras. El proceso de medición corresponde a cinética de tiempo fijo.

Las muestras no pueden ser guardadas en el control de calidad.

Este procedimiento de cálculo posee parámetros especiales que permiten llevar a cabo un control de los tiempos dentro de una medición. Estos parámetros son: tiempo de intervalo T1, de medición T2, de retraso T3, de reacción #2 y de reacción #3. Al determinarse un tiempo de intervalo (valor entre 10s y 255s) los otros parametros para el control de tiempo cobran validez. En el modo con control de tiempo la cantidad de muestras es determinada por el tiempo de intervalo y el tiempo de medición, por ejemplo con un tiempo de medición de 60s y un intervalo de 10s es posible medir hasta 6 muestras (sin blanco de muestra). El tiempo de medición deberá ser escogido mayor o igual al tiempo de intervalo.

Al iniciarse el método, un diálogo pregunta por el uso de un blanco de muestra.

Luego de realizada la medición de blanco se da inicio al proceso de medición con control de tiempo con [MEDIR]. Mediante una combinación de señales acústicas y mensajes de texto en pantalla el Fotómetro controla los tiempos para realizar la medición completa. La primera fase de medición E1 puede ser terminada en cualquier momento con [E1/E2]. En la segunda fase E2 será medida siempre la misma cantidad de muestras que en la primera fase E1.

Antes de comenzar una nueva serie E1/E2 debe ser realizada una nueva medición de blanco.

El tiempo de reacción #3 sólo será tomado en cuenta si se ha ingresado un tiempo de reacción #2. En este caso se ingresará al modo de reactivo, en el cual el Fotómetro además toma el control de los tiempos para aplicar el reactivo antes de proceder a medir las muestras y la cantidad de muestras será determinada por el tiempo de reacción #2 y el tiempo de intervalo. El tiempo de reacción #2 deberá ser escogido menor o igual al tiempo de reacción #3 y mayor o igual al tiempo de intervalo.

La figura 5.1 muestra la secuencia de tiempo para una medición con control de tiempo con N muestras, tiempo de retraso T3 y sin tiempo de reacción.

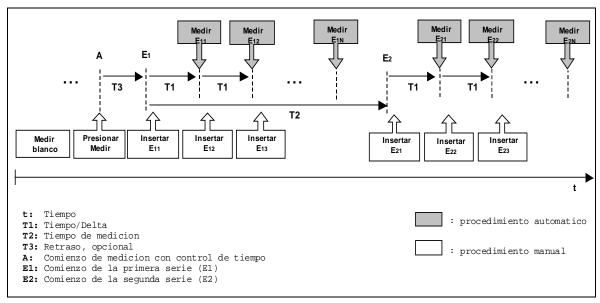


Fig. 5.2: Medición con control de tiempo

Procedimiento de cálculo	PC 14
Característica	C / F / Delta
Método	Diferencia con Factor
Fórmula de cálculo	$C = F * (\Delta A_{M2-BM2} - \Delta A_{M1-BM1})$
Factor	predefinido / ingresar
Blanco de muestra	con / sin
Tiempo intervalo T1	ingresar (0, 10s a 255s)
Tiempo medición T2	ingresar (0 a 1800s)
Tiempo retraso T3	ingresar (0 a 1800s)
Tiempo reacción #2	ingresar (0 a 1800s)
Tiempo reacción #3	ingresar (0 a 1800s)

_	
	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 - Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 - Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 14: C/F DELTA	
PROC. CALC.: 14	La ventanilla de medición será mostrada en pantalla.
FACTOR: 1.000	'
LONG. DE ONDA: 405nm	
TEMPERATURA: 37C	
INTERVALO: 12s	
MEDICION: 100s	
RETRASO: 10s	
REACCION 2: 40s	
REACCION 3: 60s	
UNI DAD: U/1	
	Ejecución de la medición con Blanco de Muestra:
AJUSTE DE CERO	→ Presentar y medir la solución de CERO
NOOSIL DE OLIVO	
NR. Bm[A] M[A]E1	→Medir todas la muestras E1 (max. 25)
1 0.083 0.411	
2 0.110 0.382	
3 0.146 0.492	→Con [E1/E2] cambiar a medir E2
0.140 0.402	7 0011 [2 1/ 22] 0011112101 0 1110011 22
NR. Bm[A] M[A]E2	→Medir todas la muestras E2 (max. 25)
1 0.091 1.090	(),
2 0.140 0.991	
3 0. 200 1. 165	
0.200 1.100	
NR. RESULTADO	Resultados de las diferencias de las muestras medidas
1 0.671	
2 0.578	→Con [MODO] [MODO] [DETAIL] se muestran en pantalla
3 0.619	todos los resultados
0.010	
NR. Bm[A] M[A]E1	
1 0.000 1.012	Ejecución de la medición sin Blanco de Muestra:
2 0.000 1.138	→Medir todas la muestras E1 (max. 25)
3 0.000 1.076	, ,
2 3.333 1.373	→Con [E1/E2] cambiar a medir E2
NR. Bm[A] M[A]E2	· ·
1 0.000 1.458	→Medir todas la muestras E2 (max. 25)
2 0.000 1.530) '
3 0.000 1.384	
3 0.000 1.004	
NR. RESULTADO	
1 0.446	Resultados de las diferencias de las muestras medidas
2 0.392	
3 0.307	→Con [MODO] [MODO] [DETAIL] se muestran en pantalla
0.007	todos los resultados
-	•

5.4.15 Procedimiento de cálculo 15 (C/F 3 LO)

Procedimiento en el cual la muestra es medida con tres diferentes longitudes de onda predefinidas: 380 nm, 415 nm y 450 nm. Este procedimiento es apropiado para medición de Hemoglobina libre. Las longitudes de onda aqui nombradas no están incluidas en el set estándar de filtros.

El factor debe ser alterado en caso de usar disolvente (ver capítulo 5.1.3).

Procedimiento de cálculo	PC 15
Característica	
Método	Medición con 3 longitudes de onda
Fórmula de cálculoC [mg/dl]= F * (1	68 * A _{415nm} - 84 * A _{380nm} - 84 * A _{450nm})
Factor	predefinido / ingresar
Factor de conversión	

	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6. 8a dd/mm/aa E	4.1 - Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 - Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 15: C/F 3 WL	
PROC. CALC.: 15	La ventanilla de medición será mostrada en pantalla.
FACTOR: 1.00	
LONG. DE ONDA:	
380/415/450nm	
TEMPERATURA: 37C	
RATRASO: 2s	
UNI DAD: mg/dl	
AJUSTE DE CERO	→Presentar y medir la solución de CERO.
NR. μmol/L mg/dl	
1 4. 859 7. 83	→El resultado será presentado en 2 unidades de medida.
2 5. 865 9. 45	
	→ Presentar y medir la solución de muestra.

5.4.16 Procedimiento de cálculo 16 (DELTA R1R2)

Método para dos ensayos de punto final, mediante el cual es posible calcular la diferencia de absorbancia (E1 y E2) luego de agregar dos reactivos R1 y R2 a una muestra. E1 representa la absorbancia de una muestra, a la que se le ha agregado el reactivo 1 (R1), antes de agregar un segundo reactivo (R2). E2 es la absorbancia después de agregar R2. El transcurso del procedimiento está esquematizado en Fig. 5.4.16.1.

El número máximo de muestras depende de la duración del tiempo de medición de los reactivos 1 y 2 (T2 y T3). El número de muestras puede ser reducido presionando [->R2] antes de comenzar la medición u omitiendo otras muestras durante la primera fase de pipeteado

El usuario es guiado durante el procedimiento mediante indicaciones en pantalla (prepare y aplique reactivo, etc., ver Fig. 5.4.16.2) y señales acústicas.

F_{dil} es el factor de corrección de volumen, el cual es calculado en base a los volúmenes ingresados (volumen de muestra (a), volumen de R1 (b) y volumen de R2 (c) en la página 3/3 de los parámetros del método. El factor es ajustado por defecto a 1.000 en caso que estos volúmenes no sean ingresados.

$$\Delta A_S = E2 - F_{dil} * E1$$

con
$$F_{dil} = (a + b) / (a + b + c)$$

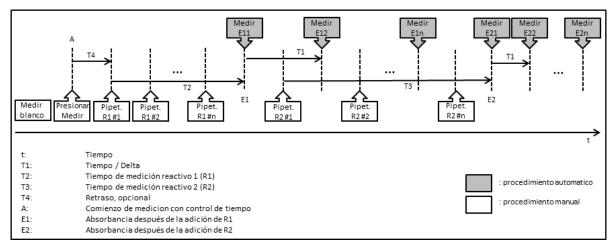


Fig. 5.4.16.1: Medición con control de tiempo

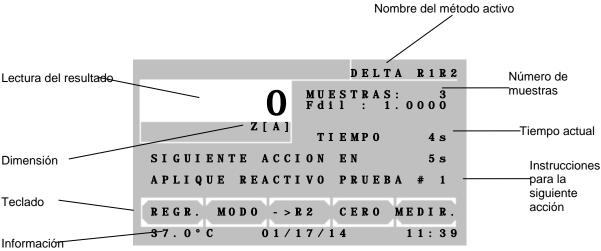


Fig. 5.4.16.2: Pantalla durante ejecución del método

Procedimiento de cál	culoCP 16
Característica	DELTA R1R2
Método	Medición de diferencia de dos reactivos
Fórmula de cálculo	
Factor	dado / ingresar
Tiempo / Delta T1	ingresar (20 a 255s)
Tiempo medición R1	T2ingresar (0 a 1800s)
	T3ingresar (0 a 1800s)
Retraso T4	ingresar (0 a 1800s)

DUOTED TETED 10.10	La elección del método se inicia desde el menú principal.
PHOTOMETER 4040 # 2250	Ver capítulo:
V6.8a dd/mm/aaE	4.1 - Medición con métodos programados
LABOR: RI ELE BERLI N	4.2 - Medición con métodos básicos
OPER. 1: M. MUSTERMANN	
FECHA: 07/04/16	Al encontrarse el impresor activo serán imprimidos los datos del
HORA: 08: 44: 12	método.
METODO 20: DELTA R1R2	
PROC. CALC.: 16	
FACTOR: 1. 000	
LONG. DE ONDA: 546nm	
TEMPERATURA: 37C	La ventanilla de medición será mostrada en pantalla.
RETRASO: 0s	· ·
TIEMPO REA. #1 130s	
TIEMPO REA. #2 130s	
UNI DAD:	
AJUSTE DE CERO	→ Presentar y medir la solución de CERO
	, ,
E1 1 0. 285 [A]	→Presentar y medir muestras con reactivo 1
E1 2 0. 285 [A]	
E1 3 0. 285 [A]	
E2 1 0. 165 [A]	→ Presentar y medir muestras con reactivo 2
E2 2 0.165 [A]	,
E2 3 0.165 [A]	El usuario es guiado durante la ejecución del método con
L 0 0.100 [A]	indicaciones en pantalla.
NR. RESULADO	
NR. RESULADO	
1 -0.116	→El resultado es mostrado
2 -0.116	7 El Todalado do Modiado
3 -0.116	
3 -0.110	

6 EDITOR DE METODOS

El editor de métodos facilita enormemente el trabajo diario de laboratorio. En base a 15 procedimientos de cálculo se pueden almacenar en memoria hasta 231 métodos definidos por el usuario. Las funciones del editor de métodos permiten crear nuevos métodos así como copiar, editar o eliminar métodos existentes.

Fig. 6.1

METODO NUEVO/EDITAR/COPIAR

COPIAR METODO

LISTA

EDITAR METODO

NUEVO METODO

BORRAR METODO

7.0°C

01/17/14

11:39

Impresión de un lista de métodos:

HEMOGLOBI N METODO 20: 29. 4 405nm g/dl METODO 21: HDL-C 1.000 546nm mg/dl **METODO** 30: CREATI NI N 2.0 492nm mg/dl METODO 31: GOT F-1746. 0 340nm U/l

En la ventana principal del editor de métodos se encuentran las siguientes opciones:

[COPIAR METODO] Cambia a Fig. 6.2, donde es posible seleccionar entre diferentes opciones.

[EDITAR METODO] Cambia a Fig. 6.3, donde será requerido el ingreso del número del método a editar. A continuación es posible variar todos los parámetros del método seleccionado.

[NUEVO METODO] Cambia a la elección de procedimiento de cálculo (ver capítulo 5.3 SUMARIO DE LOS PROCEDIMIENTOS DE CÁLCULO), después de seleccionar un procedimiento de cálculo se dirigirá a Fig. 6.4. Entonces es posible editar todos los parámetros para el nuevo método.

[BORRAR METODO] Cambia a Fig. 6.3, donde será requerido el ingreso del número del método a eliminar. Luego de ser confirmada la acción, el método seleccionado será eliminado (Métodos básicos y fijos no pueden ser borrados).

[LISTA] Entrega una lista de todos los métodos programados en el impresor y a través de la interfaz serial de datos.

[FIN] Regresar al menú principal

FIN ULTIMO #→#

[#→#] Todos los métodos a partir del número 20 pueden ser copiados a otro número de método. Primeramente se requerirá ingresar el número del método a ser copiado (Fig. 6.3), cuyos parámetros pueden ser modificados a partir de Fig. 6.4.

[ULTIMO] El último metodo en ser utilizado puede ser copiado a un nuevo lugar. El usuario será guiado a Fig. 6.4 con los parámetros actuales del método.

Esta función puede ser usada, por ej., cuando un método básico ha sido exitosamente probado con nuevos parámetros. El método básico con sus parámetros puede ser entonces almacenado a partir del número 20 como un nuevo método.

[FIN] Regresar al menú principal

METODO NO.

METODO : (NOMBRE)
UNIDAD : (UNIDAD)

1 2 3 4 5 6 7 8

ESC 9 0 . + - E

En esta ventana es requerido el ingreso de un número de método. El último método en ser utilizado será propuesto. Con [+] o [-] es posible desplazarse entre los métodos existentes. Asimismo es posible ingresar el método de forma numérica. Un método conocido será mostrado con su nombre y unidad de medida.

[E] Selección del método mostrado

[ESC] Regresar al menú principal

Fig. 6.4 (Ventana de parámetros 1)

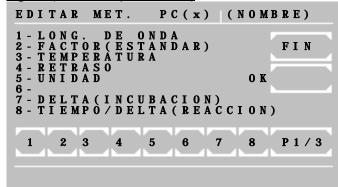


Fig. 6.5 (Ventana de parámetros 2)

1 191 Clo (Comana de parametros 2)	
EDITAR MET. PC(x) (NO	OMBRE)
1 - V A L O R M A X . 2 - V A L O R M I N . 3 - M I N . R ^ 2	FIN
4-NOMBRE DEL METODO 5-MED. MULTIPLE 6-	о к
7 - MULTI - ESTANDAR 8 - BICROMATICO	
1 2 3 4 5 6 7 8	B P2/3

Fig. 6.6 (Ventana de parámetros 3)

				•			~~	~					_							
E	D I	T	A	R		M	ΕΊ			P	C	(x)	1	(N	0 N	1 B :	RE)	
2 .	- 1		L	0	R		ΜI				S	1					5	FI	N	٦
4	- 1	/ A	Ľ	0	R	R	I D M A	O X			S S S	1					L	o 77		1
6	- 1		L	0	R		ΜI				S						Ľ	0 K		4
8	- 1	/ A	Ľ	ŏ	R	R	I D M A	X	•		S	2								
П	1	V	2	Ī	3		4		M	5	M	6	N	7	V	8	V	Р3	/ 3	N
E		4					4					Ī								

Las ventanas de parámetros 1 y 2 muestran los datos generales del método.

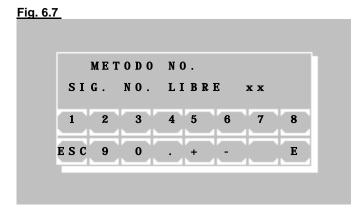
La ventana de parámetros 3 contiene funciones especiales, que sólo son necesarias para el control de calidad (ver abajo).

Cada parámetro está indicado en la pantalla con un número. Al presionar un número en el teclado en pantalla es posible modificar el parámetro correspondiente.

La cantidad y tipo de los parámetros dependen del procedimiento de cálculo actual, como consecuencia los números de índice pueden tener distintas funciones. Indices sin un parámetro no tienen función.

[FIN] Regresar al menú principal.

[OK] Aceptar los ajustes de parámetros, según modo de editorposiblemente será preguntado el método de destino.


[P../3] Cambia a la siguiente ventana de parámetros.

Ventana de parámetros 3:

Al menos un suero de control debe ser definido, antes de poder ingresar datos en esta ventana de parámetros. (ver capítulo 7.2.5 Control de calidad).

Cuando al menos un suero de control ha sido ingresado con sus valores de referencia y de límite, será reservada memoria de control de calidad para este método. El método puede ser entonces supervisado con el control de calidad integrado.

Al borrar ambos números de ID, serán también borrados todos los datos y la memoria reservada para éste método en el control de calidad!

Ingreso del nuevo número de método, bajo el cual será almacenado el nuevo método. El siguiente número de método libre será mostrado. Sin embargo, es posible seleccionar cualquier número de método libre entre 20 y 250.

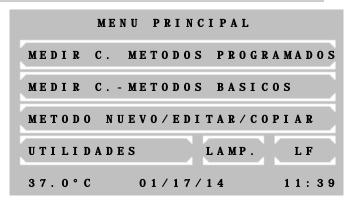
[E] Almacena el método bajo el número seleccionado. Si se trata de un método con múltiple estándar, continuará con <u>Fig. 6.8</u>.

[ESC] Cancelar y regresar al menú principal

Para métodos con múltiple estándar se encuentra a disposición el editor de curvas.

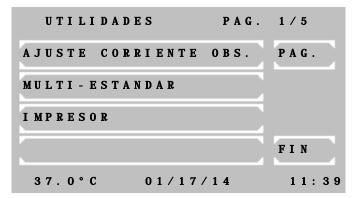
[P+] y [P-] Cambia al punto de referencia posterior o anterior.

[A/C] Cambia entre A, para ingresar un valor de Absorbancia, y C, para ingresar un valor de concentración.


Al ingresar y confirmar un "0" para A se eliminará el punto de referencia actual. Para ingresar el valor cero, deberá entrar "0.0".

[ESC] Finalizar. A continuación se solicitará quardar los datos de la curva.

Para medir con un método con estándar múltiple deben ser definidos al menos dos puntos de referencia!


7 UTILIDADES

7.1 SELECCION DE LAS UTILIDADES

Menú principal:

Las utilidades son necesarias para la configuración y el mantenimiento del equipo.

Página 1 de las Utilidades:

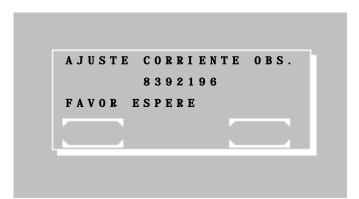
Presione [PAG.] para acceder a las distintas utilidades. La página actual será indicada en la esquina superior derecha de la pantalla. Presione [FIN] para regresar al menú principal.

Para seleccionar una utilidad, presione la superficie correspondiente en la pantalla sensible al tacto.

Utilidad	Descripción en capítulo
Ajuste óptico	7.2.1
Funciones de estándar múltiple	7.2.2
Impresor ON / OFF	7.2.3
Menu serial com	7.2.4
Control de calidad	7.2.5
Imprimir configuración	7.2.6
Archivo Resultados	7.2.7
Control de temperatura ON / OFF	7.2.8
Ajuste temperatura	7.2.9
Nombre del laboratorio	7.2.10
Nombre de operador	7.2.11
Listado de errores	7.2.12
Tono de teclado ON / OFF	7.2.13
Calibración de la pantalla sensible al tacto	7.2.14
Fecha / Hora	7.2.15
Lenguaje	7.2.16
Lectura del convertidor AD (Optica)	7.2.17
Area de servicio	7.2.18

7.2 DESCRIPCION DE LAS UTILIDADES

7.2.1 Ajuste óptico



El ajuste óptico, debe efectuarse una vez transcurrido el tiempo mínimo de precalentamiento del equipo de 15 minutos, pero es preferible hacerlo después de una hora de encendido el equipo.

Retire la cubeta del adaptador.

Para evitar la entrada de luz externa se deberá cerrar la tapa del área de trabajo.

El ajuste se inicia al presionar [INIC.].

Calibración del nivel de corriente obscura.

Espere aproximadamente 40 s hasta que finalice el ajuste.

Esta función no puede ser interrumpida por el usuario. Luego de completarse el programa regresa al nivel de utilidadaes.

Al realizar mensualmente un ajuste óptico se compensarán posibles variaciones en la exactitud de las mediciones, provocadas por influencias del medio ambiente.

7.2.2 Funciones de estándar múltiple

Antes de poder editar datos de curva de un método con estándar múltiple, es necesario crear el método (ver capítulo 6 EDITOR DE METODOS). <u>No es posible editar una curva, cuyo método no exista aún!</u> El concepto "número de curva" es en este caso equivalente a "número de método".

Al realizar una medición en un método con estándar múltiple, debe tenerse en cuenta que todos los valores de Absorbancia de las muestras deben encontrarse dentro del rango delimitado por los puntos que definen la curva. En caso contrario no es posible calcular un resultado. Em la pantalla será mostrado "+-" y en la impresión el valor del resultado será reemplazado por "<<< >>>".

Ventana principal de las funciones de estándar múltiple.

[MEDIR CURVA] Luego de preguntar por un número de curva y por el primer estándar, el programa cambia automáticamente a la ventana de selección de métodos. Desde ahí es posible controlar nuevamente o variar los parámetros predefinidos del método correspondiente. El resto de los estándares serán requeridos durante el proceso de medición.

El programa de medición de estándares múltiples deriva automaticamente en los siguientes procedimientos de cálculo:

 $PC1 \rightarrow PC5$ $PC2 \rightarrow PC6$

PC3 → PC7

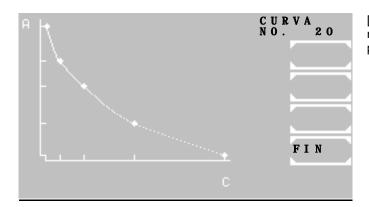
PC4 → PC8

 $PC9 \rightarrow PC10$

 $PC11 \rightarrow PC12$

 $PC14 \rightarrow PC14$

Si se desea utilizar otro método estándar que el propuesto, es posible escoger cualquier otro método estándar (antes de medir el primer estándar) presionando [MODO] [MODO] [M-STD]. Un número de curva y los estándares serán requeridos.


[IMPRIMIR CURVA] Luego de ingresar un número de curva, ésta será enviada al impresor integrado o a través de la interfaz serial de datos.

Para realizar una medición en un método con estándar múltiple deben ser definidos al menos dos puntos de referencia con A y C!

Impresión de una curva:

ABS.	CUMU
0.302	60
0.600	30
0.920	15
1.160	7.5
1.501	3.25
	0.600 0.920 1.160

[EDITAR CURVA] Luego de ingresar un número de curva se abrirá la ventena del editor de puntos de referencia de curva mostrado en Fig. 7.2.2.2 . Desde ahí es posible editar cada punto de referencia de la curva.

[MOSTRAR CURVA] Luego de ingresar un número de curva, será mostrada la función en pantalla.

Fig. 7.2.2.2

P 1 A - 0 0 0 0 0 0 NUEVA A
C - 0 0 0 0 0 0

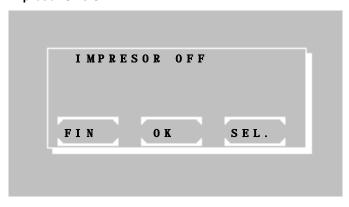
P - A / C

[LISTA] Entrega una lista en pantalla de los números de método y la fecha de creación de las curvas actuales.

[FIN] Regresa al menú de utilidades.

[P+] y [P-] Cambia al punto de referencia posterior o anterior.

[A/C] Cambia entre A, para ingresar un valor de Absorbancia, y C, para ingresar un valor de concentración.


[E] Actualiza el valor editado.

Al ingresar y confirmar un "0" para A se eliminará el punto de referencia actual. Para ingresar el valor cero, deberá entrar "0.0".

[ESC] Finalizar. A continuación se solicitará guardar los datos de la curva. Los puntos de referencia serán almacenados en orden ascendente de acuerdo a su valor de Absorbancia.

7.2.3 Impresor ON / OFF

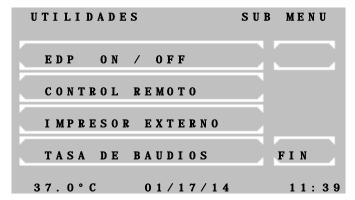
ESC

NO. ABS. RESULT. 1 0.675 19.8

HORA: 11:21:32

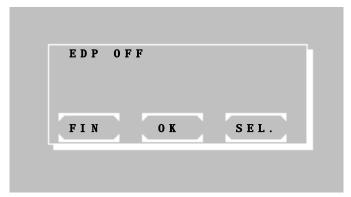
El estado actual del impresor integrado será mostrado en pantalla como ON u OFF.

La configuración puede ser variada con [SEL.].


La configuración será guardada de manera permanente con [OK].

La configuración será guardada de manera temporal hasta que se apague el equipo con [FIN].

Presionar [MODO] [IMPR.] después de una medición para cambiar el estado de la impresora.o presionar [HORA] para imprimir la hora actual.


7.2.4 Menu serial com

En el panel posterior del Fotómetro 4040 se encuentra una interfaz serial de datos RS 232, a la cual es posible conectar una PC o un impresor externo. Un cable de datos apropiado puede ser enviado aparte (REF 501-002). El equipo periférico conectado debe cumplir con la norma de seguridad EN 60950.

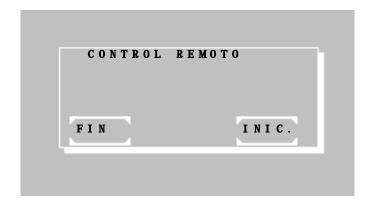
El menú cuenta con las siguientes funciones:

- Activar o desactivar EDP
- Activar el control remoto
- Activar o desactivar un impresor externo a través de la interfaz serial de datos
- Configuración de tasa de baudios

7.2.4.1 EDP ON/OFF

El estado actual de la interfaz de EDP (Electronic Data Processing) será mostrado en pantalla como ON u OFF.

La configuración puede ser variada con [SEL.]. Las siguientes opciones son posibles:

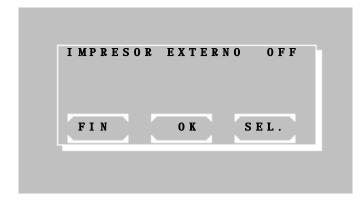

- EDP OFF: interfaz inactiva,
- EDP ON (CR-LF): interfaz activa con protocolo CR-LF,
- EDP ON (STX-ETX-BCC): interfaz activa con protocolo STX-ETX-BCC,
- EDP ON (CR-LF-LOG): luego de cada medición será enviado el resultado a través del puerto serial (ej. ver tabla. 7.2.4.1)

La configuración será guardada de manera permanente con [OK].

La configuración será guardada de manera temporal hasta que se apague el equipo con [FIN].

Tabla 7.2.4.1

No. Serie	No. de método	NO. ID.	Numerador	Resultado	Control de Temperatura	Usuario	Fecha	Hora
11000	20	12345	1	15.5	*	[nombre]	08/09/09	09:30:47


7.2.4.2 CONTROL REMOTO

Activar el control remoto con [INIC.].

Al encontrarse esta función activa, es posible controlar el equipo de manera externa mediante una PC con un software apropiado.

Para desactivar esta función mantenga presionada la pantalla sensible al tacto durante algunos segundos.

Con [FIN] regresará al punto anterior del menú.

7.2.4.3 IMPRESOR EXTERNO ON / OFF

El estado actual del impresor serial externo será mostrado en pantalla como ON u OFF.

La configuración puede ser variada con [SEL.].

La configuración será guardada de manera permanente con [OK].

La configuración será guardada de manera temporal hasta que se apague el equipo con [FIN].

7.2.4.4 TASA DE BAUDIOS

El estado actual es mostrado en pantalla.

La configuración puede ser variada con [SEL.].

La configuración será guardada de manera permanente con [OK].

Para desechar los cambios presione [FIN].

7.2.5 Control de calidad

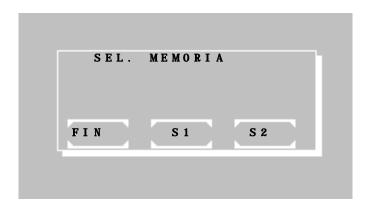
Hasta 50 métodos pueden ser supervisados con un control de calidad (CC) en el Fotómetro 4040. El equipo puede administrar hasta un máximo de 6 sueros de control. Cada método supervisado puede estar relacionado a 2 sueros de control. Los datos de CC de una serie de mediciones son guardados en la memoria diaria. Cada resultado de medición es guardado junto con el número de método, fecha e identificación de usuario. Desde la memoria diaria es posible borrar los datos de CC o enviarlos a la memoria mensual del método correspondiente. La memoria mensual de un método de CC puede almacenar hasta 31 resultados de medición. Al llegar al resultado número 32 será eliminado de la memoria el resultado más antiguo. Deben existir al menos 20 resultados de medición para un método en la memoria mensual, para poder obtener un cálculo de los valores de calidad. Se obtendrá el promedio de todas las mediciones, la desviación estándar y el coeficiente de variación. Los contenidos de las memorias diaria y mensual pueden ser mostrados en pantalla y enviados al impresor.

Todos los métodos, excepto los métodos básicos, pueden estar relacionados a un control de calidad. La información específica para un método de un suero de control es ingresada mediante el editor de métodos (ver capítulo 6 EDITOR DE METODOS).

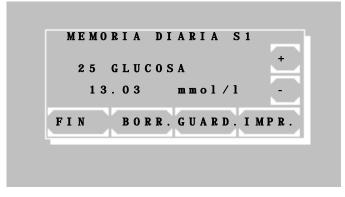
El menú de CC cuenta con las siguientes funciones:

[INGR. SUERO DE CONTROL] Hasta 6 sueros de control pueden ser definidos. <u>No es posible iniciar un control de calidad si no se ha definido al menos un suero de control!</u>

[MEMORIA DIARIA] Mostrar, imprimir y editar la memoria diaria para el suero 1/2


[MEMORIA MENSUAL] Mostrar, imprimir y editar la memoria mensual para el suero 1/2

[CC EDP] - sin función -


7.2.5.1 INGRESAR SUERO DE CONTROL

- [1] Ingresar el nombre (max. 15 caracteres)
- [3] Ingresar no. de lote. (max. 10 car.)
- [5] Ingresar el fabricante (max. 10 car.)
- [7] Ingresar fecha de expiración (max. 8 car.)
- [NO.] Cambiar al siguiente suero de control
- [FIN] y [OK] Aceptar y regresar al menú de

7.2.5.2 MEMORIA DIARIA

- [S1] Seleccionar memoria diaria para suero 1
- [S2] Seleccionar memoria diaria para suero 2
- [FIN] Regresar a ventana anterior

Impresión de la memoria diaria para suero 1:

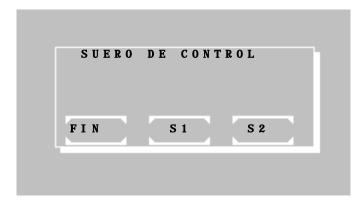
** MEMORIA DIARIA ***S1* PHOTOMETER 4040 # 2250 V6. 8a dd/mm/aa E

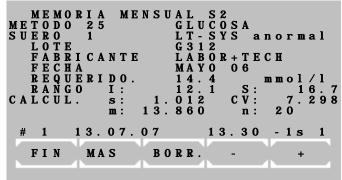
LABOR: RIELE BERLIN

FECHA: 07/04/16 HORA: 08: 44: 12

25 GLUCOSA 13.03 21 HDL-C 367 197. 2 27 UREA COL 29 CK-MB 1128.1 31 GOT 189.9

datos diaria Los de la memoria correspondiente serán mostrados con número de método, nombre del método, resultado de medición y unidad de medida.


- [+] Cambiar al siguiente resultado
- [-] Cambiar al resultado anterior


[BORR.] Eliminar el resultado actual de la memoria diaria. Para seguridad es necesario presionar nuevamente [BORR.].

[GUARD.] Almacenar el resultado actual en la memoria mensual. Para seguridad es necesario presionar nuevamente [BORR.]. El resultado será entonces eliminado de la memoria diaria.

[IMPR.] Imprimir todos los resultados

[FIN] Regresar al menú de CC

7.2.5.3 MEMORIA MENSUAL

Luego de ingresar un número de método, deberá seleccionar entre suero 1 o 2 para el método.

[S1] Seleccionar memoria mensual para suero 1

[S2] Seleccionar memoria mensual para suero 2

[FIN] Regresar a ventana anterior

En la ventana del método seleccionado son visibles todos los datos del control de calidad. La línea ubicada encima de las teclas de función muestra la siguiente información:

(# 1) → Numerador de la memoria mensual. El número 1 corresponde al resultado más antiguo.

(27.01.06) → Fecha del resultado

(13.30) → Resultado

(-1.s) → Variación del resultado se encuentra dentro de menos 1s. Advertencia a partir de +/-3s. Si la variación es > 3s será mostrado un asterisco (*). El cálculo de los datos comienza a partir de un número de 20 resultados de medición!

(1) → Identificación de usuario

Las teclas tienen las siguientes funciones:

- [+] Cambiar al siguiente resultado
- [-] Cambiar al resultado anterior

[BORR.] Eliminar todos los datos del método seleccionado de la memoria mensual con una pregunta de seguridad (por ej. al cambiar un suero de control)

[MAS] Cambiar al diálogo de salida

[FIN] Regresar al menú de CC

Impresión de memoria mensual de un método para suero 2:

```
** MEMORIA MENSUAL **S2*
FECHA:
                    07/04/16
PHOTOMETER 4040
                      # 2250
V6. 8a dd/mm/aa E
LABOR:
         RI ELE BERLI N
METODO 25: GLUCOSA
UNI DAD:
                      mmol/l
SUERO NO.
  I D
           LT-SYS anormal
                 G312
  LOTE
  FABRI CANTE
                 LABOR+TECH
  FECHA
                MAY0 06
  REQUERI DO.
  VALOR MIN.
                         12.1
  VALOR MAX.
                         16.7
RES. CC
PROMEDIO
                 n: 20
                     13.860
                 m:
DESVIACION ST s:
                     1.012
COEF. DE VAR. CV:
                           +3s
                           +2s
               13.54 - 1s
15.02.06
                             1
14.02.06
               14.07 + 1s
                            1
13.02.06
               14.69 + 1s
12.02.06
               13.50 - 1s
                             3
11.02.06
               14.68 + 1s
10. 02. 06
09. 02. 06
               15. 33 +2s
15. 99 +3s
                            1
08. 02. 06
               15.38 + 2s
                            2
07.02.06
               14.61 + 1s
                             1
06.02.06
               13.70 - 1s
                            1
05. 02. 06
04. 02. 06
               12. 74 - 2s
                            1
               12. 13 - 2s
03.02.06
               12.65 -2s
                            2
02.02.06
               13.11 -1s
                             1
01.02.06
               13.88 + 1s
31. 01. 06
30. 01. 06
               13. 51 - 1s
13. 24 - 1s
                            3
```

12.50 - 2s

12.74 - 2s

13.30 - 1s

1

2

Diálogo de salida

Si la memoria mensual contiene al menos 20 resultados de medición, éstos serán mostrados en un diagrama Levey-Jennings. De este modo es posible controlar visualmente las variaciones y así reconocer mejor tendencias y errores sistemáticos.

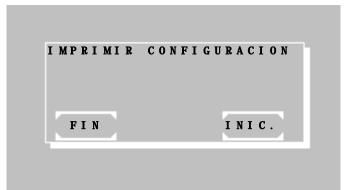
Junto al gráfico de la curva se encuentran las teclas para las opciones de impresión de la curva:

[IMP-N] Impresión normal de los datos de la memoria mensual actual. Los detalles de los resultados de medición no son imprimidos.

[IMP-D] Impresión detallada de los datos de la memoria mensual actual. Los detalles de los resultados de medición serán imprimidos como en el ejemplo mostrado a la izquierda.

[FIN] Regresar al menú de CC.

29.01.06

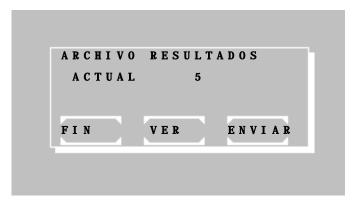

28.01.06

27.01.06

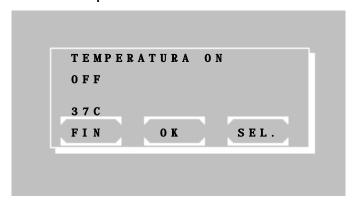
Sin función

7.2.5.4 QC EDP

7.2.6 Imprimir configuración


Presionando [INIC.] se imprimirán la versión del programa y el completo estado actual de la configuración del equipo.

 ${\tt ***}{\tt CONFIGURACION~ACTUAL**}$ FECHA: 07/04/16 HORA: 08: 44: 12 PHOTOMETER 4040 # 2250 V6. 8a dd/mm/aa E /T1.6 CORE V1. 0
PCB LAYOUT C
LECT. ADC(AJUSTE OBS.)
E: 8394148 E: 8392514 FI LTROS 1: 340 1/ 1% 4: 546 2: 405 3: 492 9/10% 5: 578 $41/\bar{43\%}$ 6: 623 49/52% 60/64% 61/66% 7: 999 0/ 0% 8: 999 0/ 0% 9: 999 0/ 0% 37C 11273 BATERIA: OF 3000 OK CORRECCION ADC 250 AUMENTO nm 390 EDP ON TOUCH (STX-ETX-BCC) Mx148 My192 Fx120 Fy100 LENGUAJES 1: INGLES 2: ESPAÑOL TONO DE TECLADO OFF T. COUNTER: 33 S COUNTER: 334: 45 402 METODOS PROGRAMADOS ARCHI VO RESULTADOS 0 0


El porcentaje es proporcional al nivel de intensidad de luz.

El porcentaje de la izquierda representa al adaptador E y el de la derecha al adaptador D.

7.2.7 Archivo Resultados

7.2.8 Control de temperatura ON / OFF

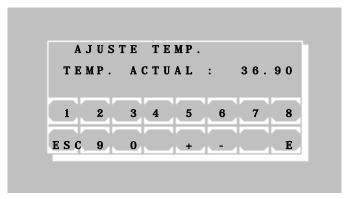
Presione [FIN] para cancelar la función.

Presione [VER] para mostrar los resultados almacenados

Presione [ENVIAR] para transmitir todos los resultados almacenados a través de la interfaz serial.

Luego de completada la transmisión es posible borrar todos los resultados almacenados en memoria. Presione [INIC.] para borrar los resultados o [FIN] para mantener los resultados en memoria.

El estado actual del control de temperatura es mostrado en la primera línea como ON o como OFF.


Con [SEL.] es posible ajustar el control de temperaura. Las siguientes opciones son posibles:

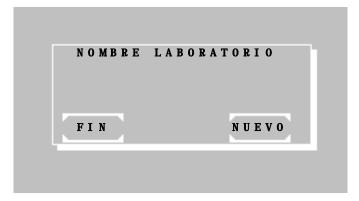
- OFF
- 37° C

La configuración será guardada de manera permanente con [OK].

La configuración será guardada de manera temporal hasta que se apague el equipo con [FIN].

7.2.9 Ajuste temperatura

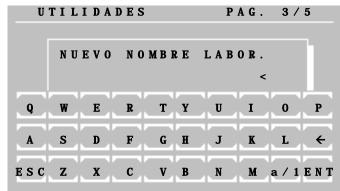
El control de temperarura ha sido calibrado en fábrica!


Sin embargo, es posible realizar un ajuste del control de temperatura, por ej. en caso de pérdida de datos. Para ello, el sistema deberá estar encendido por lo menos durantre 30 minutos antes de ajustarlo.

Mida la temperatura actual dentro de la cubeta con un sistema de medición independiente (por ej. Thermistor , REF 090-063) e ingrese este valor. De acuerdo a la diferencia con 37.0 °C , el sistema corrige el ajuste interno proporcionalmente. El ajuste de temperatura se interrumpe cuando el sistema térmico esta en la condición de apagado o la temperatura es inestable.

Ingrese la clave de seguridad "4040".

Ingrese la temperatura medida externamente en °C usando siempre cuatro dígitos (por ej. 36.90) y confirme con [E].


7.2.10 Nombre del laboratorio

El nombre del laboratorio puede ser guardado permanentemente.

En caso de existir un nombre grabado, será enviado un renglón adicional en el encabezado al impresor local o externo.

Para ingresar un nuevo nombre de laboratorio presione [NUEVO].

Ingrese el nombre de laboratorio a través del teclado alfanumérico.

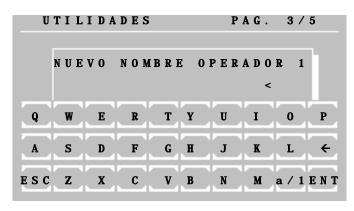
El teclado cuenta con las siguientes funciones:

- [a/1]: Cambia a minúsculas
- [1/A]: Cambia a símbolos numéricos
- [A/a] : Cambia a mayúsculas
- [←]: Borrar carácter
- [→]: Espacio
- [ESC]: Cancelar sin guardar
- [ENT]: Finaliza el ingreso del nombre y guarda el nombre.

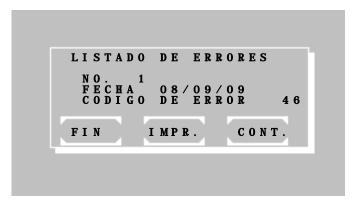
7.2.11 Nombre de operador

Se pueden incorporar al sistema un máximo de 5 nombres de usuarios y grabarse permanentemente.

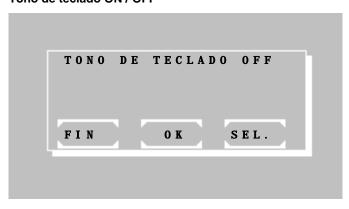
Después de llamar un método, el sistema pregunta por el nombre del usuario.

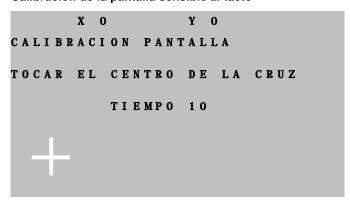

En caso de elegir un operador, un renglón adicional en el encabezado se enviara a la impresora local o externa.

Seleccione un usuario con [SEL.]. Para ingresar un nuevo operador presione [NUEVO].


Ingrese el nombre de operador a través del teclado alfanumérico.

El teclado cuenta con las siguientes funciones:


- [a/1]: Cambia a minúsculas
- [1/A]: Cambia a símbolos numéricos
- [A/a]: Cambia a mayúsculas
- [←]: Borrar carácter
- [→]: Espacio
- [ESC]: Cancelar sin guardar
- [ENT]: Finaliza el ingreso del nombre y guarda el nombre.


7.2.12 Listado de errores

7.2.13 Tono de teclado ON / OFF

7.2.14 Calibración de la pantalla sensible al tacto

Los últimos 10 errores pueden ser mostrados o imprimidos.

El error más antiguo será mostrado al principio. El último error será siempre indicado con el No. 1.

Con [CONT.] serán mostrados los siguientes errores.

Con [IMPR.], una lista completa de los errores ocurridos será enviada al impresor integrado o a través del puerto serial.

Para identificar errores consulte la lista de errores codificados (capítulo 9.4 - MENSAJES DE ERROR CODIFICADOS).

El estado actual del tono de teclado será mostrado en la primera línea como ON u OFF. Esta configuración puede ser variada con [SEL.].

La configuración será guardada de manera permanente con [OK].

La configuración será guardada de manera temporal hasta que se apague el equipo con [FIN].

La señal acústica de error permanecerá de todos modos activa.

Mediante esta función es posible realizar un ajuste de la superficie sensible al tacto y de la gráfica en pantalla.

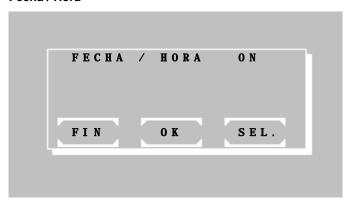
Al activar esta función aparecerá una una cruz blanca en la esquina inferior izquierda de la pantalla. Con un utensilio de punta plástica que no raye o dañe la superficie (puntero especial para pantalla sensible al tacto, punta de pipeta) deberá tocar lo más exactamente posible en el centro de la cruz blanca. En la primera línea serán mostrados los valores de las coordinadas x e y. Luego de transcurridos 10s los valores serán aceptados. Después aparecerá la cruz en la esquina superior derecha de la pantalla. Luego de tocar nuevamente el centro de la cruz y transcurridos 10s el sistema preguntará si desea guardar el ajuste.

Con [OK] guarde el nuevo ajuste de la pantalla.

Con [FIN] será desechado el nuevo ajuste.

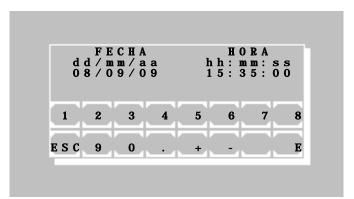
<u>Nota</u>: La calibración de la pantalla sensible al tacto puede ser activada directamente durante la rutina de encendido del equipo. Así es posible recalibrar un equipo desajustado:

Encienda el equipo. Luego de ver la pantalla inicial (capítulo 2.3 - INSTALACION) mantenga presionada la pantalla sensible al tacto. Después de algunos segundos será emitido un tono de señal más grave y se mostrará el texto "CALIBRACION PANTALLA" en la primera línea de la pantalla inicial. Dentro de un segundo deberá dejar de presionar la pantalla para entrar a la rutina de ajuste de pantalla. La calibración deberá ser realizada como descrito anteriormente. Luego de completar el ajuste de la pantalla, deberá ser escogido el tipo de fotómetro en uso.


Seleccionar tipo de Fotómetro:

Presione [ENDE] para desechar los cambios.

Presione [OK] para confirmar la configuración.


Seleccione el tipo de Fotómetro presionando [SEL.].

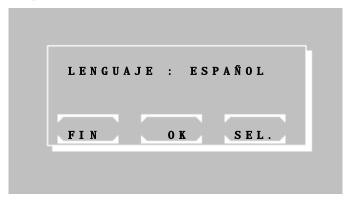
7.2.15 Fecha / Hora

El estado actual del indicador de fecha y hora será mostrado en la primera línea.

Esta configuración puede ser cambiada con [SEL.].

Cada vez que se activa el reloj es posible ajustar la fecha y hora actuales con [OK]. Cada vez que ingrese día, mes, año, hora, minutos y segundos debe confirmar con [E].

Si desea variar un valor deberá ajustar todos los valores!


NO. ABS. RESULT.

1 0.675 19.8

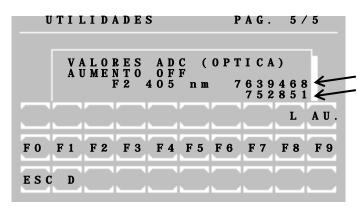
HORA: 11:21:32

Al estar la impresora activada es posible imprimir la hora actual despues de una medición mediante [MODO] [IMPR.] y presionando [HORA].

7.2.16 Lenguaje

El lenguaje actual será mostrado en la primera línea.

El lenguaje puede cambiarse con [SEL.]. El sistema ofrece las siguientes opciones:


LENGUAJE : INGLES

• LENGUAJE : ESPAÑOL

La configuración será guardada de manera permanente con [OK].

La configuración será guardada de manera temporal hasta que se apague el equipo con [FIN].

7.2.17 Lectura del convertidor AD (Optica)

Aquí será mostrado el valor actual del convertidor análogo-digital de la óptica. Este es proprcional a la brillantez recibida en el fotodetector y depende de la opción de aumento.

Valor (A)

Valor (B) = valor corriente obscura - valor (A)

El sistema reaccionará posiblemente después de 3 segundos luego de activar una tecla.

La función AU incrementa (Aumento ON) o decrementa (Aumento OFF) el tiempo de lectura del ADC. Las funciones F0 - F9 mueven la rueda de filtros a las posiciones 0 a 9. La posición 0 corresponde a la posición de la rueda para el ajuste de corriende obscura. La función [L] enciende o apaga la lámpara halógena.

[D] por ejemplo, para facilitar el alineamiento óptico la intensidad de la lámpara puede ser reducida.

Finalizar la función con [ESC].

Seleccionando [D]:

[MIN.] minimiza la potencia y por lo tanto la intensidad de la lámpara es reducida.

[MAX.] la lámpara funciona con su intensidad habitual.

[FIN] finaliza la función encendiendo nuevamente la lámpara.

7.2.18 Area de servicio

El área de servicio está reservada para el servicio técnico y protegida mediante una contraseña.

Finalizar la función con [ESC].

8 MANTENIMIENTO

El presente capítulo brinda información al usuario acerca del mantenimiento del equipo.

En caso de ocurrir alguna falla del sistema y que no pueda ser resuelta por el usuario, deberá recurrir a su representante de servicio de la localidad. Reparaciones en el equipo deben ser realizados solamente por personal especializado y autorizado. Reparaciones inadecuadas ponen en peligro al usuario y conducen además a la pérdida de la garantía.

8.1 INSTRUCCIONES DE LIMPIEZA

Materiales de desecho líquidos pueden representar un peligro biológico. Use siempre guantes apropiados al trabajar con estos materiales. No toque ninguna parte del equipo que no sea determinada para el uso de éste. Consulte el protocolo de laboratorio con respecto al manejo de substancias de riesgo biológico.

Asegúrese que no penetre ningún líquido al equipo. El dispositivo no cuenta con una protección especial contra humedad penetrante (código IP X0).

Evite descargas eléctricas y destrucción del equipo: No permita que agua o líquidos de trabajo penetren al interior del equipo.

Para limpiar y descontaminar las superficies del equipo, use cualquier producto descontaminador que encuentre en el mercado o substancias especiales que venden las empresas que abastecen materiales y reactivos a los laboratorios clínicos como: Microzid[®]-Spray, Bacillol[®] plus Spray, 3 % Kohrsolin[®] o artículos similares. Apague el equipo y desconéctelo de la red de voltaje, entonces limpie y descontamine minuciosamente el equipo usando una tela suave empapada de la solución limpiadora.

8.2 CALIBRACION DEL SISTEMA DE MEDICION

En caso de mediciones dudosas, llevar a cabo el procedimiento de ajuste de corriente obscura según descripción en capítulo 7.2.1.

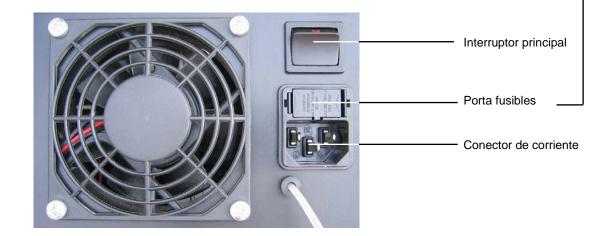
8.3 CAMBIO DE PAPEL DE IMPRESION

Ver capítulo 2.4 - COLOCACION DE PAPEL DE IMPRESION.

8.4 REMPLAZO DE FUSIBLES DE LINEA

El Espectrofotómetro 4040 de forma automática opera en voltajes entre $100~V_{AC}$ y $240~V_{AC}$ a 50/60~Hz sin ningún ajuste. Este cuenta con dos fusibles de protección en serie con la fuente de poder. Los fusibles están colocados en la parte posterior del equipo. Para remplazar los fusibles, desconecte el equipo de la línea de suministro eléctrico y saque el porta fusible como se muestra en la figura de abajo. El equipo es enviado con dos fusibles de repuesto.

No use fusibles substitutos ni puentes, use sólo los indicados


Especificaciones de los fusibles:

• Dimensiones [mm] : 5 * 20

• Estándar: IEC 60127-2/V

Característica: lenta (T)
 Voltaje: 250 V
 Corriente: 1,6 A
 Tipo: T 1,6 A H

9 MENSAJES DE ERROR Y CORRECCION

9.1 NOTA GENERAL

Ingresos equivocados (ej. Numero de método o factor equivocados), reconocidos por el usuario, pueden ser corregidos llenando el campo de entrada con cualquier signo. Después de llenar el campo en su totalidad, la entrada equivocada es anulada dejando el campo libre nuevamente para entrar el dato correcto.

Los mensajes de error son notificados al usuario por medio de un tono audible (capítulo 9.2 - MENSAJE ACUSTICO DE ERROR) o como una combinación de mensaje audible y mensaje en pantalla.

En pantalla, los errores se muestran como texto (ver capítulo 9.3 - MENSAJES DE ERROR EN TEXTO)

... o codificados con un numero de error (ver capítulo 9.4 - MENSAJES DE ERROR CODIFICADOS).

Los mensajes de error deben ser confirmados oprimiendo [E].

9.2 MENSAJE ACUSTICO DE ERROR

Cuando se oprime una tecla no permitida o sin significado, será emitido un tono más grave como señal de error después del tono más agudo (tono de teclado, puede ser apagado según capítulo 7.2.13 - Tono de teclado ON / OFF). Paralelamente en pantalla no aparecerá ningún mensaje de error. La operacion del equipo puede continuar simplemente ingresando la información correcta.

9.3 MENSAJES DE ERROR EN TEXTO

RANGO MIN.	La medición esta por debajo del limite mínimo establecido.
RANGO MAX.	La medición esta por encima del limite máximo establecido.
NON-LINEAR	El cuadrado del coeficiente de correlación r cae en mediciones cinéticas por debajo del limite bajo programado establecido.
RANGO +/-	En mediciones cinéticas, la tendencia es incorrecta (ascendente / descendente).
NO METODO	El método seleccionado no existe . Elija otro método del listado de métodos.
CALENTAR OFF	Calentar / Enfriar esta apagado durante el proceso de calibración.
TEMP. INESTABLE	La temperatura esta inestable durante la calibración de temperatura.

9.4 MENSAJES DE ERROR CODIFICADOS

No.	Causa (probable)	Solución
1	El método esta protegido, El método no puede borrarse	Usar software especial
2	Error en verificación de suma de un método libremente programado	Programe un método nuevo.
3	Entrada prohibida, formato numérico equivocado.	Repita entrada en zona permitida.
4	Método no disponible	Editor de método: verifique No de Método.
5	Valor de corriente obscura muy alto (> 16 bit) o mayor que la medición, ADC saturado	Repetir el ajuste óptico (cap. 7.2.1); verifique la lámpara / el filtro, los blancos
6	Todas las posiciones multiplexoras están ya sea muy brillantes o muy obscuras al ajuste de CERO	Repetir el ajuste óptico (cap. 7.2.1); verifique la lámpara / el filtro, los blancos

7	Saturación matemática en los cálculos de las mediciones.	verifique filtro; verifique estándar, Verifique la solución de muestra
8	Error en verificación de suma en registro de datos de corriente obscura	Repetir el ajuste óptico (cap. 7.2.1)
9	Error en verificación de suma en registro de datos del ajuste del estándar del equipo (estatus, corrección ADC)	Corrección automática de error
10	División por un valor muy pequeño (< 0.001 A)	Verifique filtro; verifique estándar, verifique solución medida.
11	Curva de calibración inválida.	Seleccione numero válido.
12	Ajuste a CERO imposible (el valor cero es < 32768 ciclos)	Verificar lámpara ; verificar filtro; verificar la solución de CERO
13	Ajuste a CERO imposible (el valor cero es > 983039 ciclos)	Repetir el ajuste óptico (cap. 7.2.1); verificar lámpara ; verificar filtro; verificar la solución de CERO
14	Estándar inválido	Mida un estándar válido
15	Falta de espacio en memoria para ingresar parámetros (Muy poca memoria para Métodos No lineales)	Elimine los métodos No lineales que no se usen.
16	El numero de método requerido, ya esta ocupado.	Elija otro No de método o borre el método no lineal si no se usa.
17	Error de verificación en suma en la memoria de parámetros (Método No-lineal)	Re programe el método nuevamente.
18	En métodos no-lineales, saturación de cálculo	Verifique el factor, y los parámetros
19	Mal funcionamiento del reloj.	
20	Saturación en Cinética	Verifique la solución de muestra
21	Saturación en Cinética	Verifique la solución de muestra
22	Saturación en Cinética	Verifique la solución de muestra
23	Saturación en Cinética	Verifique la solución de muestra
24	Saturación en Cinética	Verifique la solución de muestra
25	Saturación en Cinética	Verifique la solución de muestra
26	Saturación en Cinética	Verifique la solución de muestra
27	Saturación en Cinética	Verifique la solución de muestra
28	Saturación en Cinética	Verifique la solución de muestra
29	Entrada de deltas o tiempo por delta equivocada	Reinicie el método
30	Batería baja	Contacte a servicio técnico
31	Comunicación : Formato de datos equivocado.	Contacte a servicio técnico
32	Comunicación: Datos no legibles o interpretables	Contacte a servicio técnico
33	Comunicación: El módulo específico no responde en cierto tiempo.	Verifique módulos y sus conectores.
34	Comunicación: Saturación en el buffer de enviar/recibir	Reducir el caudal de información enviada a un modulo. periférico
35	Control remoto: Numero de método equivocado.	Problema de software externo
36	Control remoto: Comando desconocido.	Problema de software externo
37	Control remoto: Formato de datos equivocado	Problema de software externo
38	Error en verificación de suma del sistema operativo	Contacte a servicio técnico
39	Error en verificación de suma del sistema operativo	Contacte a servicio técnico
40	Tiempo terminado de recepción en modulo 2	Apague y prenda el dispositivo off/on

41	Error de verificación de suma de recepción del modulo 2	Apague y prenda el dispositivo off/on
42	NAK De recepción en modulo 2	Apague y prenda el dispositivo off/on
46	Posición de filtro fuera de tolerancia	Contacte a servicio técnico
47	+ 12 V _{DC} fuera de rango	Contacte a servicio técnico
52	Tiempo terminado al impresor interno	El impresor interno se encuentra temporalmente desconectado
53	No existen datos para la curva actual	Controle las funciones de estándar multiple
54	Medición No-lineal fuera de rango	Controle la Absorbancia de las muestras
55	Numero de puntos de datos < 2	Agregue puntos de datos adicionales
59	Error durante la ejecución de la medición (Remoto)	Controle la interfaz de datos
60	Error en el multiplexer del amplificador operacional	Contacte a servicio técnico
62	No hay espacio disponible para métodos	Controle la memoria de métodos
63	Dirección incorrecta al cargar estándar múltiple	Controle los estándares múltiples
64	Método actual no ha sido encontrado en memoria del mes	Controle datos de CC del método
65	Más de 50 métodos de CC definidos	Borrar métodos de CC fuera de uso
66	Horario interno no es almacenable en los datos de CC	Encender el reloj interno
67	Error de BCC en datos del método en CC	Controlar el método actual
68	No hay suficiente memoria mensual disponible para CC	Borrar métodos de CC fuera de uso
69	No hay suficiente memoria diaria disponible para CC	Borrar la memoria diaria
70	Error en cálculo del CC	Comprobar datos de CC
71	Suero del CC no encontrado	Comprobar datos de CC
72	Dirección errónea al almacenar resultados	Enviar resultados por interfaz serial y borrar resultados almacenados (cap. 7.2.7)
73	Memoria Ilena: almacenamiento de resultados	Sobreescribir o enviar resultados por interfaz serial y borrar resultados almacenados (cap. 7.2.7)
74	Error de BCC al enviar resultados	Enviar resultados por interfaz serial y borrar resultados almacenados (cap. 7.2.7)

10 DATOS TECNICOS

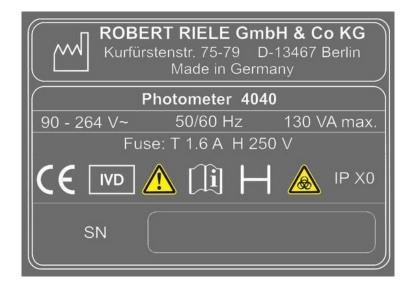
10.1 CONDICIONES AMBIENTALES

Condiciones climáticas para almacenar y transportar este equipo:

Temperatura: -25 °C a +70 °C
 Humedad ambiental relativa: 20 % a 85 %

Condiciones climáticas para la operación del Fotómetro 4040:

Temperatura: +15 °C a +35 °C
 Humedad ambiental relativa: 20 % a 85 %


- El equipo no debe ser expuesto directamente a los rayos solares ni a otra fuente directa de radiación.
- El área de operación debe estar suficientemente ventilada:
- Libre de polvo excesivo
- Libre de gases inflamables
- Libre de vibraciones
- Libre de interferencia por ondas electromagnéticas
- Lejos de cualquier máquina que genere voltage de alta frecuencia (ej. centrífuga)

10.2 CALIDAD MINIMA DE OPERACION

Los amplificadores analógicos de alta sensibilidad procesan y operan señales indeseadas de manera similar a la señal de medición, y puede aparentar que los amplificadores se saturan y operan mal, una vez que la señal indeseada es eliminada, se restaura la condición de operación normal. Un cambio breve en la respuesta del equipo no influye en el funcionamiento general del equipo.

10.3 PLACA DEL EQUIPO

Para instalar y poner en operación, fíjese en las especificaciones de la placa del equipo.

10.4 **BREVIARIO DE ESPECIFICACIONES**

Espectrofotómetro de filtros y haz sencillo Tipo

Fuente de luz Lámpara halógena de - 12 V, 20 W con función de protección de lámpara

Rango de longitud de onda

Selección de longitud de

onda

Automática con rueda de filtros motorizada de 9 posiciones:

6 filtros estándar de interferencia: 340 nm, 405 nm, 492 nm, 546 nm, 578 nm y 623 nm; 3 posiciones para otros filtros a elección del usuario

Rango fotométrico 0 – 2,5 Absorbancia

Sistema de muestreo Cubetas estándar normales (macro o semi-micro, desechables o especiales

de vidrio óptico)

340 nm - 800 nm

Control de temperatura Celdilla de medición y bloque de incubación de 8 posiciones temperados a

37 °C mediante termostatos eléctricos

Interfaz de operación Pantalla sensible al tacto para funciones directas e ingreso de datos

alfanuméricos

Presentación de datos Pantalla gráfica: caracteres blancos sobre fondo azul iluminado,

resolución 240 * 128 puntos

Impresor integrado Impresor térmico

Lenguajes Inglés y Francés/Alemán/Indonesio/Ruso/Español

Memoria Sistema operativo actualizable mediante PC

Capacidad para 231 métodos pre-programados

Importación de datos por pantalla sensible al tacto o PC

Hasta 50 curvas de calibración no-lineales con un máximo de 20 juegos

de puntos pueden almacenarse

Puerto de conexión Puerto serial para conectar un impresor externo y/o una PC

Administración de datos Hasta 1000 resultados pueden ser automáticamente almacenados en la

memoria del equipo Absorbancia

Procedimientos de medición

Punto final con factor, estándar o estándar múltiple, con o sin blanco de reactivo y/o blanco de muestra

Punto final bicromática

Cinética con factor, estándar o estándar múltiple con o sin blanco

Tiempo fijo con factor, estándar o estándar múltiple,

con o sin blanco de reactivo

Turbidimetría con función opcional de control de tiempo

Medición con determinación simple, doble o triple

Ajuste de curva para funciones no lineales de curva estándar

Hemoglobina libre en combinación con filtros de interferencia opcionales

Control de calidad Supervisión de un máximo de 50 métodos con dos sueros de control, gráfico Levey-Jennings.

Tiempo de medición Cinética: variable de 5 - 19 deltas, tiempo por delta 3 - 255 s

Tiempo fijo: variable desde 0 - 1800 s

Programable desde 0 - 1800 s Tiempo de retraso

Fuente de Poder Rango: 100 V_{AC} hasta 240 V_{AC}, 50/60 Hz

Dimensiones Longitud 33 cm x ancho 34 cm x altura 18 cm

Peso 5.3 ka

Símbolos

10.5 ESPECIFICACIONES TECNICAS

Descripción de acuerdo con DIN 58960 parte 4

Α	Identificación	
A.1 A.2	Tipo de Espectrofotómetro: Modelo:	Photometer 4040 4040
A.3	Instrucciones para uso:	Photometer 4040, Instrucciones de operación
A.4	Fabricante:	ROBERT RIELE GmbH & Co KG Kurfürstenstrasse 75-79 D-13467 Berlin Germany

DECLARACION DE CONFORMIDAD:

El Espectrofotómetro de Absorbancia arriba descrito, está en conformidad con la siguiente descripción metrológica.

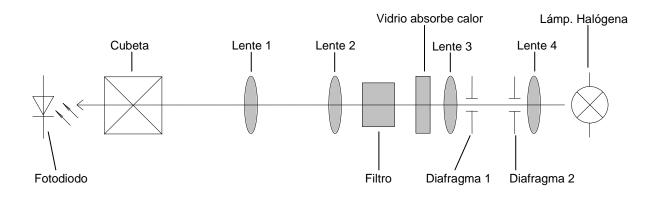
Berlin, Noviembre 2016

ROBERT RIELE GmbH & Co KG

21. 2ich

W. Riele

В	Descripción Metrologica	
B.1	Sistema de medición	
B.1.1	Configuración óptica:	ver Figura
B.1.2	Fuente [s] de radiación:	Lámpara de vapor halógeno
B.1.3	Sistema espectroscopio:	Rueda de filtros
B.1.4	Detector [es] de radiación:	Fotodiodo
B.1.5	Cubeta[s]:	De 10 mm de paso óptico vidrio o plástico
		(rectangular)
B.1.6	Regulación de temperatura en cubeta:	37 °C
B.1.7	Unidades de trabajo:	Absorbancia, masa concentración,
		actividad enzimática
B.1.8	Pantalla de presentación de datos:	Pantalla digital,
		Absorbancia: 0.000 a 2.500
		concentración de masa: 0.000 a 9999
		actividad enzimática: 0.000 a 9999
B.2	Método de medición	
B.2.1	Generación de Absorbancia espectral A(λ)	medición monocromatica
B.2.2	Ajuste de CERO de la Absorbancia espectral	manual
B.2.3	Control de la Absorbancia espectral medida:	con solucion de referencia (ver manual)
B.2.4	Determinación[es] de concentración:	De acuerdo a ecuacion de Lambert-Beer


B.3 Rango de medicion especificado

Fuera del rango de medición especificado, y en condiciones fuera de lo especificado en la sección B.4, como consecuencia, los valores dados en la sección B.5 pueden estar fuera de rango tambien.

B.3.1	Absorbancia espectral A(λ):	0 A a 2.5 A
B.3.2	Rango de longitud de onda λ usable para medir:	340 nm a 800 nm
B.4	Condiciones de operación especificas	
B.4.1	Transmitancia especifica de la cubeta:	> 75 %
B.4.2	Tiempo de pre-calentamiento:	15 min
	Tiempo de pre-calentamiento con temperamiento activo:	20 min
B.4.3	Voltaje de operación:	Entre 100 V_{AC} y 240 V_{AC} a 50/60 Hz
		con una tolerancia de 10 %
B.4.4	Temperatura ambiente:	15 °C a 35 °C
B.4.5	Nivel de presión sonora	< 50 dB
B.5	Maximo error permisible y otros valores limitantes	
B.5 B.5.1	Maximo error permisible y otros valores limitantes Incertidumbre fotometrica de Absorbancia espectral:	max. ± 3 %
-	·	max. ± 3 % ≤ 1 %
B.5.1	Incertidumbre fotometrica de Absorbancia espectral:	
B.5.1 B.5.2	Incertidumbre fotometrica de Absorbancia espectral: Coeficiente de variación fotometrica (tiempo corto):	≤ 1 %
B.5.1 B.5.2 B.5.3	Incertidumbre fotometrica de Absorbancia espectral: Coeficiente de variación fotometrica (tiempo corto): Incertidumbre de longitud de onda:	≤ 1 % max. ± 2 nm
B.5.1 B.5.2 B.5.3 B.5.4	Incertidumbre fotometrica de Absorbancia espectral: Coeficiente de variación fotometrica (tiempo corto): Incertidumbre de longitud de onda: Ancho de banda espectral media en el detector:	≤ 1 % max. ± 2 nm
B.5.1 B.5.2 B.5.3 B.5.4	Incertidumbre fotometrica de Absorbancia espectral: Coeficiente de variación fotometrica (tiempo corto): Incertidumbre de longitud de onda: Ancho de banda espectral media en el detector: Falsa radiacion de longitudes integradas,	≤ 1 % max. ± 2 nm
B.5.1 B.5.2 B.5.3 B.5.4	Incertidumbre fotometrica de Absorbancia espectral: Coeficiente de variación fotometrica (tiempo corto): Incertidumbre de longitud de onda: Ancho de banda espectral media en el detector: Falsa radiacion de longitudes integradas, (medidas como transmitancia a 340 nm de un	≤ 1 % max. ± 2 nm ≤ 10 nm

CONSTRUCCION OPTICA

En la siguiente ilustración, el haz de rayos va de derecha a izquierda. La muestra se coloca en la cubeta.

REF

ACCESSORIOS Y REPUESTOS 11

Favor de contactar su distribuidor responsable de area.

0552402001	Cable de alimentacion
501-002	Cable de datos de interfaz serial
805-410	Cubetas desechables, 1000 pzas

Cubetas de vidrio optico, 4 pzas 0573655001

Estuche de estándares secundarios, certificado 090-064

Descripción

1704818001 Funda cubre polvo

5010-018 Fusibles de linea, 10 pzas 5010-024 Biogent-A, 1000 ml Incubador T12 500-002 500-001 Incubador T16

0554871001 Lámpara halogena 12V/20W

5010-005 Manual de operación

090073 Papel de impresor térmico, 5 rollos

4040-034 Separador para volumen de medición 250 µl Separador para volumen de medición 500 µl 4040-035

1707574001 Tapa superior para impresor

090-063 Thermistor

Incubador T12

Incubador T16

12 LISTADO DE METODOS

- 1 15..........15 Métodos básicos (capítulo 12.1 METODOS BASICOS)
- 16 19.....Libres (reservado para 4 métodos preprogramados de cálculo)
- 20 250...... Hasta 231 Métodos específicos del usuario (capítulo 12.2 LISTA DE METODOS DEL USUARIO como copia maestra / para ser llenada por el usuario)

12.1 METODOS BASICOS

				_	_	_	_	_	_	_	_	_	_	_	_
Valor max.															
Valor min.															
r^2 min.															
Cinética T1 Temperamiento r^2 min. Valor min. Valor max. Reacción															
Cinética T1 Reacción [s]															
Retraso Incubación [s]															
Factor Estándar															
۲ سا															
Característica	C/F	C/F/Br	C/F/Bm	C/F/BmBr	C/S	C/S/Br	C/S/Bm	C/S/BmBr	CTF/F/Br	CTF/S/Br	CIN/F/Br	CIN/S/Br	TRANSM.	C/F DELTA	C/F 3 LO
PC	-	2	3	4	2	9	7	ω	6	10	11	12	13	14	15
Unidad Volumen															
Unidad													%		
Nombre del método	C/F	C/F/Br	C/F/Bm	C/F/BmBr	S/O	C/S/Br	C/S/Bm	C/S/BmBr	CTF/F/Br	LTF/S/Br	CIN/F/Br	CIN/S/Br	TRANSM.	C/F DELTA	C/F 3 LO
ž	-	2	9	4	2	9	7	∞	6	10	11	12	13	14	15

12.2 LISTA DE METODOS DEL USUARIO

DE MET	U3			US												
r^2 min. Valor min. Valor max.																
Valor min.																
Cinética T1 Temperamiento Reacción [s]																
Cinética T1 Reacción [s]																
Retraso Incubación [s]																
Factor Estándar																
γ [um]																
Característica																
PC		I	I													
Volumen																
Unidad Volumen																
Nombre del método																
ž.																